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Multimorbidity—the coexistence of two or more long-term conditions within an individual—has 
become a defining challenge in population health. Prevalence is increasing globally, particularly 
among older adults and socioeconomically disadvantaged groups. Multimorbidity is associated 
with diminished quality of life, high service utilisation, fragmented care, and widening health 
inequalities. Public health urgently needs scalable, ethical, and interpretable solutions to 
understand, monitor, and address its complexity. Yet, the tools traditionally used in public 
health research and planning—such as regression-based models and manual cohort 
curation—are fundamentally limited in addressing the scale, dynamism, and heterogeneity 
that characterise multimorbidity today. In this context, artificial intelligence (AI) offers a 
necessary evolution in our approach to health data science—one that can meet the demands 
of increasingly complex datasets and enable proactive, data-driven public health action [1]. AI 
allows the integration of diverse data sources, from clinical records to social determinants, 
enabling analyses that uncover hidden associations and inform targeted interventions at 
population scale.

In our own work, we encountered one of the most foundational barriers to large-scale 
multimorbidity research: dataset curation. When using the English Longitudinal Study of 
Ageing (ELSA) [2]—a cohort with over 94,000 variables across multiple waves—manual 
selection and harmonisation of variables proved slow, inconsistent, and dependent on expert 
knowledge. Each wave introduced subtle definitional differences, requiring careful 
interpretation that often takes months to complete. To address this, we developed and 
evaluated two AI-driven pipelines. A semantic search pipeline using natural language 
processing achieved a high AUC (0.899) (AUC - Area Under the Receiver Operating 
Characteristic Curve: a measure of how well a model can distinguish between classes; higher 
AUC means better discrimination), effectively identifying relevant variables in response to 
domain-specific queries [3]. This enabled us to retrieve semantically related variables, even when 
terminology differed across datasets. A second semantic clustering pipeline, although with a 
more modest V-measure (0.237), which is a score that checks how well computer-made groups 
match the real groups by balancing homogeneity (each group is consistent) and completeness 
(all similar items are kept together) [4]. This clustering approach demonstrated the feasibility of 
AI-assisted harmonisation across study waves [5]. Most critically, these tools achieved over a 
100-fold speed increase compared to manual curation, making previously unmanageable 
datasets usable for public health analysis. This step-change in efficiency has major 
implications for longitudinal and population studies, allowing more timely insights and 
cross-cohort comparisons.

In another application, we used the Clinical Practice Research Datalink (CPRD) to explore the 
social care needs of individuals with multimorbidity across a 20-year period, covering nearly 
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280,000 individuals. Traditional subgrouping methods like 
latent class analysis were infeasible given the scale—over 
500,000 data points from routine clinical care. We instead 
used Mini-Batch K-means, which is a clustering variant of 
the K-Means method, using small, randomly selected subsets of 
data rather than the entire dataset that significantly reduces 
clustering time comparable with traditional K-Means [6]. 
Evaluated using silhouette scores (average >0.9), the 
resulting 15 clusters represented robust and distinct care 
need profiles, spanning over 2 million person-years. These 
insights revealed natural groupings of patients based not 
only on their conditions, but also on associated care 
requirements—information vital for commissioners, 
integrated care systems, and public health teams. This AI- 
enabled approach moves beyond descriptive statistics and 
towards actionable segmentation: understanding who needs 
what type of care, when, and why. In public health terms, this 
supports resource targeting, proactive outreach, and equitable 
service design [7]. The capacity to integrate medical, 
demographic, and social data at such scale offers an 
unprecedented opportunity to anticipate demand and plan 
services in a way that is equitable and cost-effective.

AI presents transformative opportunities for the public health 
response to multimorbidity: Surveillance: Clustering and 
predictive models can identify emerging multimorbidity 
patterns in ageing or marginalised populations [8]. Precision 
prevention: Stratifying populations by condition combinations, 
medication profiles, or social risk factors allows for better- 
targeted interventions and more effective use of resources. 
System planning: AI can inform where to locate 
multidisciplinary teams, community care hubs, or social 
prescribing schemes by anticipating local need [9]. These 
applications signal a paradigm shift in how population health 
challenges can be addressed, moving toward proactive, 
predictive, and personalised approaches.

The challenge is not technical capability—it is uptake, 
governance, and public trust. Despite the promise, AI in 
public health brings important risks that must be proactively 
managed. Algorithmic bias remains a major concern. If trained 
on incomplete or non-representative data, AI models may 
entrench inequalities in care access and quality [10]. 
Similarly, black-box tools lacking explainability may be 
misapplied or misunderstood in community settings. 
Transparency, fairness, and explainability must therefore be 
foundational in all AI development and deployment. Models 
should be evaluated across demographic subgroups, 
incorporate principles of algorithmic accountability, and be 
designed with public input and oversight. Additionally, 
capacity building is essential. Public health professionals 
need the skills and governance frameworks to critically 
appraise AI outputs, ask the right questions, and use these 
tools effectively.

Multimorbidity challenges nearly every assumption of 
traditional public health surveillance and intervention 
design. Conditions do not act independently. Social context 
cannot be “adjusted for” and ignored. Data volume and 
complexity now exceed manual analytic capacity. AI—used 

responsibly—can help us move from descriptive to predictive, 
from reactive to preventive, and from fragmented to integrated 
care planning. In our own work, we have seen how AI 
accelerates access to meaningful patterns in large and messy 
datasets. But success depends not only on innovation, but also 
on transparency, ethics, and alignment with core public health 
values. As the prevalence and impact of multimorbidity grow, 
so too must our analytical ambition. AI is not a luxury—it is a 
public health imperative.
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