



# Machine Learning Used in Communicable Disease Control: A Scoping Review

Sharon Birdi<sup>1</sup>, Atushi Patel<sup>1</sup>, Roxana Rabet<sup>1</sup>, Navreet Singh<sup>1</sup>, Steve Durant<sup>1</sup>, Tina Vosoughi<sup>1</sup>, Faris Kapra<sup>1,2</sup>, Mahek Shergill<sup>1,2</sup>, Elnathan Mesfin<sup>1</sup>, Carolyn Ziegler<sup>3</sup>, Shehzad Ali<sup>4,5,6</sup>, David Buckeridge<sup>7</sup>, Marzyeh Ghassemi<sup>8,9</sup>, Jennifer Gibson<sup>10</sup>, Ava John-Baptiste<sup>4,11,12</sup>, Jillian Macklin<sup>1,13</sup>, Melissa Mccradden<sup>14,15,16</sup>, Kwame Mckenzie<sup>17,18</sup>, Sharmistha Mishra<sup>19,20,21,22,23,24</sup>, Parisa Naraei<sup>25</sup>, Akwasi Owusu-Bempah<sup>26</sup>, Laura Rosella<sup>16,27</sup>, James Shaw<sup>28</sup>, Ross Upshur<sup>10,16,29</sup> and Andrew D. Pinto<sup>1,16,30,31\*</sup>

<sup>1</sup>Upstream Lab, MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada, <sup>2</sup>Michael G. DeGroote School of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada, <sup>3</sup>Library Services, Unity Health Toronto, Toronto, ON, Canada, <sup>4</sup>Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, <sup>5</sup>Department of Health Sciences, Faculty of Sciences, University of York, Heslington, Yorkshire and the Humber, United Kingdom, <sup>6</sup>WHO Collaborating Centre for Knowledge Translation and Health Technology Assessment in Health Equity, Ottawa, ON, Canada, <sup>7</sup>Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada, <sup>8</sup>Department of Electrical Engineering and Computer Science, School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States, <sup>9</sup>Institute for Medical Engineering and Science, School of Engineering, Massachusetts Institute of Technology, Cambridge, MD, United States, <sup>10</sup>Joint Centre for Bioethics, University of Toronto, Toronto, ON, Canada, <sup>11</sup>Department of Anesthesia and Perioperative Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, <sup>12</sup>Schulich Interfaculty Program in Public Health, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, <sup>13</sup>Undergraduate Medical Education, Faculty of Medicine, University of Toronto, Toronto, ON, Canada, <sup>14</sup>Department of Bioethics, The Hospital for Sick Children, Toronto, ON, Canada, <sup>15</sup>Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada, <sup>16</sup>Division of Clinical Public Health, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada, <sup>17</sup>Wellesley Institute, Toronto, ON, Canada, <sup>18</sup>The Centre for Addiction and Mental Health, Toronto, ON, Canada, <sup>19</sup>Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, ON, Canada, <sup>20</sup>MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada, <sup>21</sup>Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada, <sup>22</sup>Institute of Health Policy Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada, <sup>23</sup>Department of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada, <sup>24</sup>Institute for Clinical Evaluative Sciences, Toronto, ON, Canada, <sup>25</sup>Department of Computer Science, Toronto Metropolitan University, Toronto, ON, Canada, <sup>26</sup>Department of Sociology, Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada, <sup>27</sup>Institute for Better Health, Trillium Health Partners, Toronto, ON, Canada, <sup>28</sup>Department of Physical Therapy, Faculty of Medicine, University of Toronto, Toronto, ON, Canada, <sup>29</sup>Department of Family and Community Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada, <sup>30</sup>Department of Family and Community Medicine, St. Michael's Hospital, Toronto, ON, Canada, <sup>31</sup>Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada

**Citation:**

Birdi S, Patel A, Rabet R, Singh N, Durant S, Vosoughi T, Kapra F, Shergill M, Mesfin E, Ziegler C, Ali S, Buckeridge D, Ghassemi M, Gibson J, John-Baptiste A, Macklin J, Mccradden M, Mckenzie K, Mishra S, Naraei P, Owusu-Bempah A, Rosella L, Shaw J, Upshur R and Pinto AD (2026) Machine Learning Used in Communicable Disease Control: A Scoping Review. *Public Health Rev.* 47:1608074. doi: 10.3389/phrs.2026.1608074

**Objectives:** Communicable diseases continue to threaten global health, with COVID-19 as a recent example. Rapid data analysis using machine learning (ML) is crucial for detecting and controlling outbreaks. We aimed to identify how ML approaches have been applied to achieve public health objectives in communicable disease control and to explore algorithmic biases in model design, training, and implementation, and strategies to mitigate these biases.

**Methods:** We searched MEDLINE, Embase, Cochrane Central, Scopus, ACM DL, INSPEC, and Web of Science to identify peer-reviewed studies from 1 January 2000, to 15 July 2022. Included studies applied ML models in population and public health to address ten communicable diseases with high prevalence.

**Results:** 28,378 citations were retrieved, and 209 met our inclusion criteria. ML for communicable diseases has risen since 2020, particularly for SARS-CoV-2 (n = 177), followed by malaria, HIV, and tuberculosis. Eighteen studies (8.61%) considered bias, and only eleven implemented mitigation strategies.

**Conclusion:** A growing number of studies used ML for disease surveillance. Addressing biases in model design should be prioritized in future research to improve reliability and equity in public health outcomes.

**Keywords:** public health, communicable diseases, machine learning, artificial intelligence, population health, scoping review

## INTRODUCTION

Communicable diseases, caused by pathogenic microorganisms such as viruses, bacteria, parasites, or fungi, remain a significant global public health threat [1]. Despite advances in medicine and sanitation, communicable diseases account for a substantial share of the global disease burden [2]. According to the World Health Organization (WHO), communicable diseases, including lower respiratory infections, diarrheal diseases, and tuberculosis were responsible for 8 of the top 10 causes of death in low-income countries in 2021 [3]. The COVID-19 pandemic further underscored the health, economic, and social impacts of emerging pathogens.

Machine learning (ML) has the potential to transform communicable disease management by enabling early detection and prediction of outbreaks and pandemics [4, 5]. In healthcare, ML is increasingly used to process and identify patterns in large amounts of data from electronic health records and wearable devices [4]. In public health, ML algorithms can analyze complex interactions in data from multiple sources to support more accurate predictions of emerging health threats, to define the scale of an outbreak, and to rapidly evaluate communicable disease control interventions [6, 7]. These models have seen wide application during the COVID-19 pandemic, where they were used to forecast trends, support clinical decisions, and guide resource allocation [6, 8]. [6, 8, 9] However, the extent of use of ML in population and public health remains unclear, highlighting the need for a comprehensive review of recent approaches in this field.

The objective of this study was to conduct a scoping review to identify studies that use ML to address population and public health challenges related to communicable diseases. Themes explored included whether and how teams considered bias during the design, training, and implementation of ML models. Given the well-documented risks of bias in the development and implementation of ML models for public

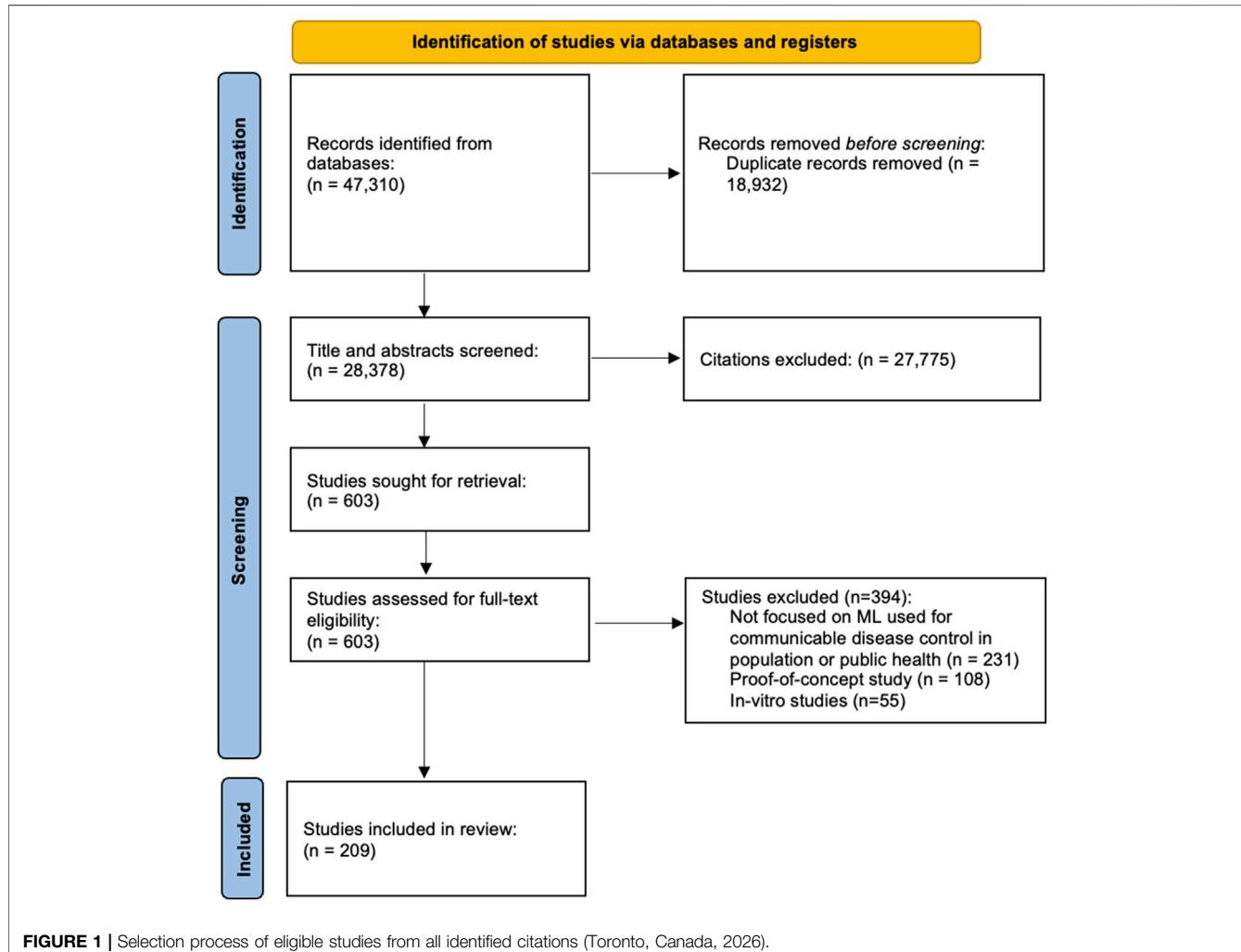
health, we prioritized this aspect to underscore the importance of fairness and equity in model outcomes.

## METHODS

This scoping review followed the Arksey and O'Malley guidelines for scoping reviews [10, 11] and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines [12]. Our protocol was published by the Open Science Framework (<https://osf.io/xydut/>).

### Search Strategy

An experienced information specialist (CZ) helped develop and conduct a comprehensive search of the peer-reviewed, indexed literature. The following databases were searched from 1 January 2000, to 15 July 2022: Medline (Ovid), Embase (Ovid), Cochrane Central Register of Controlled Trials and Cochrane Database of Systematic Reviews (Ovid), Scopus, ACM Digital Library, INSPEC, and Web of Science's Science Citation Index, Social Sciences Citation Index, and Emerging Sources Citation Index. The publication date ranged from 2000 to 2022 was selected to capture ML models that leverage modern computing techniques and recent data advancements. The search used a combination of subject headings and keywords, adapted for each database, for the broad concepts of artificial intelligence combined with the following communicable diseases: lower respiratory infections, diarrheal diseases, tuberculosis, HIV, malaria, meningitis, measles, pertussis (whooping cough), hepatitis, SARS-CoV-2. All languages were included in the search (**Supplementary Material S2**). We limited our search to these 10 specific communicable diseases based on their high global prevalence and public health impact [3]. These diseases were selected to provide a focused analysis while ensuring relevance to current population health priorities.



## Eligibility Criteria

To be eligible, studies had to meet the following criteria during both title/abstract and full-text screening: (1) focus on population-level implications or adopt a public health approach; (2) address at least one of the following conditions: lower respiratory infections, diarrheal diseases, tuberculosis, HIV, malaria, meningitis, measles, pertussis (whooping cough), hepatitis, or SARS-CoV-2; (3) utilize at least one ML model to tackle a real-world population or public health challenge. There were no language restrictions, and all study designs, except for review articles, were considered.

Studies were excluded if: (1) they did not have population-wide implications or a public health approach; (2) they did not focus on any of the conditions listed in the inclusion criteria or focused only on complications and related conditions; (3) no real-world data was used; or (4) they were commentaries, letters, editorials, conference proceedings, or dissertations.

## Study Selection and Data Collection Process

Citations from all databases were imported into DistillerSR [13] for the initial title and abstract review. Each citation was reviewed independently by two reviewers (RR, TV, AP, EM, NS) using the eligibility criteria to determine inclusion or exclusion for full-text review. Any conflicts during this process were solved through discussion with a third author (SB). Full articles were retrieved for further eligibility screening, and studies that met the eligibility criteria were included. The final set of studies included in this scoping review includes only those that passed the full-text screening process. Five members of the study team assisted with data extraction (RR, TV, AP, EM, NS).

The following data were extracted: author(s), title, journal, publication year, ML application type(s), the intended purpose of ML, study design, intervention (if applicable), results, jurisdiction, data sources, unit(s) of analysis, sample size, demographics, identification of any potential algorithmic bias in the ML model (biases related to gender, sex, ethnicity,

**TABLE 1** | Distribution of studies by country where research on machine learning in population or public health occurred (Toronto, Canada, 2026).

| Country      | Frequency | Percentage (%) |
|--------------|-----------|----------------|
| Algeria      | 1         | 0.48           |
| Bangladesh   | 5         | 2.39           |
| Brazil       | 1         | 0.48           |
| Burkina Faso | 1         | 0.48           |
| Burundi      | 1         | 0.48           |
| Canada       | 3         | 1.44           |
| China        | 15        | 7.18           |
| Colombia     | 1         | 0.48           |
| Egypt        | 1         | 0.48           |
| Eswatini     | 1         | 0.48           |
| France       | 1         | 0.48           |
| Germany      | 3         | 1.44           |
| India        | 18        | 8.61           |
| Indonesia    | 3         | 1.44           |
| Iran         | 8         | 3.83           |
| Iraq         | 3         | 1.44           |
| Israel       | 1         | 0.48           |
| Italy        | 2         | 0.96           |
| Japan        | 1         | 0.48           |
| Jordon       | 1         | 0.48           |
| Kuwait       | 1         | 0.48           |
| Malaysia     | 1         | 0.48           |
| Mexico       | 5         | 2.39           |
| Nigeria      | 2         | 0.96           |
| Pakistan     | 4         | 1.91           |
| Peru         | 1         | 0.48           |
| Philippines  | 1         | 0.48           |
| Portugal     | 1         | 0.48           |
| Qatar        | 1         | 0.48           |
| Romania      | 1         | 0.48           |
| Saudi Arabia | 8         | 3.83           |
| Serbia       | 1         | 0.48           |
| Somalia      | 1         | 0.48           |
| South Africa | 2         | 0.96           |
| South Korea  | 3         | 1.44           |
| Spain        | 3         | 1.44           |
| Taiwan       | 1         | 0.48           |
| Tanzania     | 1         | 0.48           |
| Thailand     | 1         | 0.48           |
| Turkey       | 3         | 1.44           |
| U.S.A.       | 31        | 14.83          |
| U.K.         | 2         | 0.96           |
| Ukraine      | 1         | 0.48           |
| Zambia       | 1         | 0.48           |

socioeconomic status), transferability to low- and middle-income countries, bias mitigation strategies, CDs targeted, target population and setting, intended users, and impact reported by the author. We also noted if information was unavailable from an article or if any additional sources of algorithmic bias (e.g., age-related bias) were discussed.

## Data Synthesis

We used a narrative synthesis to review and summarize the objectives, ML algorithms, and relevance of each study. We focused on how these studies used ML to characterize and detect communicable disease cases and outbreaks, detailing the application and implications of using ML algorithms on specific communicable diseases. We organized the studies by the

communicable disease explored and identified common limitations found in the studies, such as small data sets and generalizability issues.

## RESULTS

### Study Selection and Characteristics

Our initial search identified 47,310 citations. After removing 18,932 duplicates, 28,378 citations were double-screened. Following title and abstract screening, 603 studies were included for full-text review. Following full-text screening, 394 of these studies were excluded, leaving 209 studies that met our criteria for this review (Figure 1).

The number of studies using ML in communicable disease control at the population level or for public health purposes has increased over time. The first study was published in 2005, and only 10 (4.8%) studies were published between 2000–2015, and most studies ( $n = 199$ , 95.2%) were published between 2020 and 2023. A large number of studies were conducted by teams in the USA ( $n = 31$ , 14.8%), India ( $n = 18$ , 8.6%) or China ( $n = 15$ , 7.2%), but ML approaches are now common around the world (Table 1).

### Application Aims

Of the included studies, 9.57% ( $n = 20$ ) [14–33] compared various ML models/approaches, 35.9% ( $n = 75$ ) [34–51], [52–71], [72–91], [92–108] modelled population-level disease incidence as the outcome, 4.78% ( $n = 11$ ) [109–119] modelled population-level disease risk, 7.18% ( $n = 15$ ) [120–134] focused on disease surveillance, specifically identifying cases, 1.91% ( $n = 4$ ) [135–138] evaluated the effectiveness of a public health intervention on disease incidence, and 40.2% ( $n = 84$ ) [139–151], [152–171], [172–190], [191–205], [206–221] of studies were identified as having multiple application aims.

### Data Sources

Most studies sourced data from biomedical databases including aggregates of research-based data, such as clinical trials or populations health studies ( $n = 160$ , 76.6%) [14–20], [24, 25, 27], [30–32], [34–52], [55–60], [62–68], [70–82], [84–89], [91, 92, 95], [98–106], [110–117], [119], [123–125], [128, 130], [135–138], [140–148], [150, 151, 153, 154, 157, 158, 160, 161, 163], [165–168], [172, 173], [175–177], [179–196], [198, 200–207], [209, 211–215], [217–219, 221], followed by longitudinal databases ( $n = 24$ , 11.48%) [23, 28, 29, 33, 53, 61, 83, 93, 108, 118, 129, 139, 162], textual elements drawn from social media ( $n = 10$ , 4.78%) [120–122, 126, 127, 131, 134, 149, 174, 197], electronic medical records ( $n = 2$ , 0.96%), and other data sources (i.e., Google Search Trends, Meteorological and Environmental data) ( $n = 2$ , 0.96%) [199, 220]. A combination of data sources was utilized in 11 (5.26%) [54, 69, 94, 96, 97, 132, 133, 164, 208, 210, 216] of the included studies.

### Communicable Diseases

A majority of studies ( $n = 177$ , 84.7%) [14–16], [18–27], [30–32], [35–45], [49–57, 59], [62–74], [76–107], [109–117], [119, 121,

124, 125], [127–131], [133, 134], [136–156], [158–166], [168, 169], [171–178], [182–188], [191–192], [194–197], [200–218, 221] focused on SARS-CoV-2. The most commonly studied communicable diseases after SARS-CoV-2 were malaria (n = 9, 4.31%) [17, 48, 58, 60, 61, 75, 171, 219, 220], HIV (n = 8, 3.83%) [28, 29, 120, 122, 123, 135, 190, 193], tuberculosis (n = 5, 2.39%) [33, 34, 132, 189, 199], diarrheal diseases (n = 4, 1.91%) [46, 47, 179, 180], hepatitis (n = 3, 1.44%) [118, 157, 198], and measles (n = 1, 0.48%) [167]. Multiple communicable diseases were the focus of two (0.96%) [126, 181] studies included in the sample.

## Technical Approaches

A variety of specialized algorithms/models were employed across studies, such as ARIMA (AutoRegressive Integrated Moving Average) and ANFIS (Adaptive Neuro Fuzzy Inference System) (n = 127, 60.8%) [2–6], [15, 17, 21, 23, 25, 26, 28, 29], [31–38], [40, 42, 44, 45], [48–53], [57–59], [62, 63, 65, 67, 69, 71, 72, 74], [76–80], [82, 84], [86–90], [92, 94, 95, 97], [100–103], [106–114], [117, 118, 121], [124–126], [128, 130, 133, 134, 139, 141, 142, 149, 151, 153, 154], [159–161], [163, 165], [169–171], [173–179], [181–183], [185–188], [190, 191–197], [200, 201, 208]. Mixed technical approaches (e.g., combination of natural language processing, and neural networks) were employed in approximately 1 of 3 studies (n = 61, 29.2%) [20–24], [26, 30–32], [36, 39, 42, 49, 53, 56, 59, 66], [73, 76, 80, 82, 93, 97], [110, 128, 131, 132, 134, 135, 141], [143, 144, 147, 150], [152, 155–160, 162], [167–170, 174, 179], [180, 184, 191, 195, 200, 202, 210, 211], [214–218]. Supervised learning algorithms were employed in 12 studies (n = 5.74%) [51, 58, 68, 72, 87, 95, 103, 111, 116, 127, 148, 219], and deep learning neural networks were employed in 9 studies (4.31%) [24, 67, 78, 85, 105, 117, 149, 164, 176].

## Consideration of Bias and Its Mitigation

A total of 18 studies (8.61%) [68, 71, 94, 95, 101], [105–107], [117, 126, 133, 152, 153, 159, 178, 186, 193, 194] of 209 explicitly considered bias. Of the 18, five studies [80, 107, 197, 205, 206] considered demographic bias stemming from age, sex, or ethnicity which reflected a lack of representation of certain groups or the exclusion of data on specific populations. Four studies [83, 119, 171, 190] considered bias stemming from socioeconomic status which arose from limited data or underrepresentation of lower socioeconomic groups. Two studies [117, 118] did not specify the specific type of bias, and seven studies [106, 113, 129, 138, 145, 164, 165] indicated considering bias stemming from other sources, such as measurement and statistical biases. In addition, of the studies that did consider bias, 11 studies [94, 95, 105–107, 126, 133, 152, 159, 194] implemented a bias mitigation strategy to address these concerns.

## DISCUSSION

This scoping review identified 209 studies that applied ML models in population and public health to address communicable diseases. Most studies focused on SARS-CoV-2,

with modelling disease incidence being the most common application.

The COVID-19 pandemic drove a rapid growth in ML research aimed at predicting case trends and guiding public health interventions. Studies applied a range of models, from traditional regression to deep learning, to predict case trends and inform interventions. For example, Devaraj et al. used deep learning to forecast SARS-CoV-2 cases, highlighting the model's ability to learn temporal dependencies and trends [211]. Castillo-Olea et al. compared logistic regression and neural networks to identify early-stage SARS-CoV-2 cases in a hospital setting [109]. Both ML models were successful in evaluating differing variables, effectively identifying early-stage cases of SARS-CoV-2 [109]. Nguyen et al. examined BeCaked, a novel model combining the Susceptible-Infectious-Recovered-Deceased (SIR-D) compartmental model and the Variational Autoencoder (VAE) neural network, to forecast SARS-CoV-2 cases [153]. BeCaked aimed to overcome the limitations of the individual ML models to ensure effectiveness and provide reliable predictions of SARS-CoV-2 cases [153]. Overall, our analysis found that studies frequently relied on specialized or hybrid models to address the shortcomings of standalone approaches.

Specialized and ensemble approaches were frequently used to improve predictive performance and overcome model limitations. Ahmad et al. explored optimal models to predict SARS-CoV-2 cases, by comparing ML and DL models such as linear regression, support vector regression, and long short-term memory (LSTM) [14]. Lucas et al. approached SARS-CoV-2 forecasting by using a modified LSTM system, COVID-LSTM, which integrates spatiotemporal features into an LSTM model [171]. Likewise, Arik et al. extended the Susceptible-Exposed-Infectious-Removed (SEIR) model by proposing an AI-augmented epidemiology framework for SARS-CoV-2 forecasting [207]. These efforts underscore the importance of accurate forecasting tools to inform outbreak response and public health planning.

Forecasting remains a critical application of ML, particularly in pandemic response. Many studies turned to novel approaches to explore the prediction accuracy of models. Ghazaly et al. examined prediction accuracy for SARS-CoV-2 cases using a Non-linear Auto-Regressive Network (NAR) network [44]. This method is similar to ANN, except that it depends on past information for future forecasting. Accurate predictions of SARS-CoV-2 spread are critical for health systems globally as they facilitate preventative measures and timely interventions, helping to manage risks and demands [222]. The COVID-19 pandemic has put immense pressure on healthcare systems worldwide, highlighting the need for reliable and accurate forecasting models [223].

Studies also addressed malaria, HIV, tuberculosis, and diarrheal diseases. These models often incorporated meteorological or demographic data to improve predictive accuracy. Abdulkar et al. [46] used ANN to forecast the incidence of diarrheal diseases in Nigeria, while Fang et al. [179] applied an RF model to predict infectious diarrhea in

China. Brown et al. developed a predictive ML system using generalized linear models (GLM), ensemble methods, and SVM for malaria estimation [61]. Similarly, Mfisimana et al. used GLM and ANN to predict malaria cases. Given the complexity of malaria and its interventions, multivariate models are preferred, as no single intervention can fully eliminate the disease [75]. Non-linear models were frequently applied to HIV and tuberculosis to account for complex and dynamic transmission patterns [29, 132, 135]. These included backpropagation neural networks, convolutional neural networks, and ARIMA models.

A central objective of this review was to assess how studies addressed bias. Some models incorporated strategies to mitigate algorithmic bias. A study by Almazroi & Usmani used Tree-based ensemble methods in their model design, such as RFs or XGBoost, to reduce bias caused by combining various predictor models into a single model [184]. Maria-Gomez addressed bias in model implementation by adjusting models for age or sex [107]. Price et al identified bias in model training, noting that rural areas and infection incidence were not accurately represented in training datasets [164].

Applying ML models in public and population health to detect or characterize communicable diseases requires careful attention to data quality. The performance and reliability of these models depend on the consistency, completeness, and accuracy of the data used for training. Many studies reported challenges such as missing, inconsistent, inaccurate, or duplicate data, which can significantly reduce the predictive accuracy and generalizability of ML models [223].

Interpretability was another underexamined area. While ML models can support public health decision-making, opaque algorithms may limit their utility in practice. Transparent models and explainable outputs are essential to ensure accountability, particularly when predictions affect resource allocation, outbreak response, or population health planning [224].

This review has several strengths. First, it involves a comprehensive search across multiple databases, the use of clearly defined inclusion and exclusion criteria and the double-review screening process. This review also has limitations. Despite a broad search strategy designed to capture all subtypes of ML applications in public and population health to address communicable diseases, some relevant articles may have been inadvertently excluded due to our global scope and the inherent limitations of indexing. Additionally, grey literature was excluded from the search.

## CONCLUSION

This scoping review highlights the potential of ML applications in public and population health for predicting and characterizing communicable diseases. Although this study examined a broad spectrum of studies on the development, implementation, and comparison of these models, it's clear that using ML for communicable diseases

in public health is still an evolving field, with ongoing challenges remaining. There is a need for more representative datasets for training models and more rigorous validation to ensure reliable, accurate, and acceptable tools. Future research should focus further on identifying and addressing biases that can emerge during the design, training, and implementation of ML models used in public and population health.

## AUTHOR CONTRIBUTIONS

ADP conceived the study. SB, AP, RR, NS, TV, MS, EM, and FK conducted the scoping review and helped to draft the manuscript. CZ developed and executed the search strategy. All authors contributed to the article and approved the submitted version.

## FUNDING

The author(s) declared that financial support was received for this work and/or its publication. This project was supported in part by the Canadian Institutes of Health Research (CIHR). ADP is supported as a Clinician-Scientist by the Department of Family and Community Medicine, Faculty of Medicine at the University of Toronto and at St. Michael's Hospital, the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and a CIHR Applied Public Health Chair in Upstream Prevention.

## AUTHOR DISCLAIMER

The opinions, results and conclusions reported in this article are those of the authors and are independent of any funding sources.

## CONFLICT OF INTEREST

The authors declare that they do not have any conflicts of interest.

## GENERATIVE AI STATEMENT

The author(s) declared that generative AI was not used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

## SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: <https://www.sspbjournal.org/articles/10.3389/phrs.2026.1608074/full#supplementary-material>

## REFERENCES

- WHO EMRO. Infectious Diseases. *Health Topics*. Available online at: <https://www.emro.who.int/health-topics/infectious-diseases/index.html> (Accessed June 18, 2025).
- Naghavi M, Mestrovic T, Gray A, Gershberg Hayoon A, Swetschinski LR, Robles Aguilar G, et al. Global Burden Associated with 85 Pathogens in 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. *Lancet Infect Dis* (2024) 24(8):868–95. doi:10.1016/S1473-3099(24)00158-0
- The top 10 causes of death. The Top 10 Causes of Death. Available online at: <https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death> (Accessed June 18, 2025).
- Okeibunor JC, Jaca A, Iwu-Jaja CJ, Idemili-Aronu N, Ba H, Zantsi ZP, et al. The Use of Artificial Intelligence for Delivery of Essential Health Services Across WHO Regions: A Scoping Review. *Front Public Health* (2023) 11: 1102185. doi:10.3389/fpubh.2023.1102185
- Tran NK, Albahra S, May L, Waldman S, Crabtree S, Bainbridge S, et al. Evolving Applications of Artificial Intelligence and Machine Learning in Infectious Diseases Testing. *Clin Chem* (2021) 68(1):125–33. doi:10.1093/clinchem/hvab239
- Chiu HYR, Hwang CK, Chen SY, Shih FY, Han HC, King CC, et al. Machine Learning for Emerging Infectious Disease Field Responses. *Sci Rep* (2022) 12(1):328. doi:10.1038/s41598-021-03687-w
- Bratko I. Machine Learning: Between Accuracy and Interpretability. In: *Learning, Networks and Statistics*. Vienna: Springer Vienna (1997). p. 163–77.
- Wang M, Wei Z, Jia M, Chen L, Ji H. Deep Learning Model for Multi-Classification of Infectious Diseases from Unstructured Electronic Medical Records. *BMC Med Inform Decis Mak* (2022) 22(1):41. doi:10.1186/s12911-022-01776-y
- Santangelo OE, Gentile V, Pizzo S, Giordano D, Cedrone F. Machine Learning and Prediction of Infectious Diseases: A Systematic Review. *Mach Learn Knowl Extr* (2023) 5(1):175–98. doi:10.3390/make5010013
- Arksey H, O'Malley L. Scoping Studies: Towards A Methodological Framework. *Int J Social Res Methodol Theor Pract* (2005) 8(1):19–32. doi:10.1080/1364557032000119616
- Daudt HML, Van Mossel C, Scott SJ. Enhancing the Scoping Study Methodology: A Large, Inter-Professional Team's Experience with Arksey and O'malley's Framework. *BMC Med Res Methodol* (2013) 13(1):1–9. doi:10.1186/1471-2288-13-48
- Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. *Ann Intern Med* (2018) 169(7):467–73. doi:10.7326/M18-0850
- DistillerSR. *DistillerSR. Version 2.35*. DistillerSR Inc. (2023). Available online at: <https://www.distillersr.com/> (Accessed June, 2023).
- Ahmad HF, Khaloofi H, Azhar Z, Algosaibi A, Hussain J. An Improved COVID-19 Forecasting by Infectious Disease Modelling Using Machine Learning. *Appl Sci (Switzerland)* (2021) 11(23):11426. doi:10.3390/app112311426
- Jung SY, Jo H, Son H, Hwang HJ. Real-World Implications of a Rapidly Responsive COVID-19 Spread Model with Time-Dependent Parameters via Deep Learning: Model Development and Validation. *J Med Internet Res* (2020) 22(9):e19907. doi:10.2196/19907
- Melin P, Monica JC, Sanchez D, Castillo O. Multiple Ensemble Neural Network Models with Fuzzy Response Aggregation for Predicting COVID-19 Time Series: The Case of Mexico. *Healthcare (Switzerland)* (2020) 8(2):181. doi:10.3390/healthcare8020181
- Mohamed J, Mohamed AI, Daud EI. Evaluation of Prediction Models for the Malaria Incidence in Marodjeh Region, Somaliland. *J Parasitic Dis* (2022) 46(2):395–408. doi:10.1007/s12639-021-01458-y
- Mohammadi A, Menialov I, Bazilevych K, Yakovlev S, Chumachenko D. Comparative Study of Linear Regression and Sir Models of COVID-19 Propagation in Ukraine Before Vaccination. *Radioelectronic Computer Syst* (2021)(3) 5–18. doi:10.32620/reks.2021.3.01
- Mohan S, John A, Abugabah A, Adimoolam M, Kumar Singh S, kashif Bashir A, et al. An Approach to Forecast Impact of COVID-19 Using Supervised Machine Learning Model. *Softw Pract Exp* (2022) 52(4):824–40. doi:10.1002/spe.2969
- Mohimont L, Chemchem A, Alin F, Krajecki M, Steffenel LA. Convolutional Neural Networks and Temporal CNNs for COVID-19 Forecasting in France. *Appl Intelligence (Dordrecht, Netherlands)* (2021) 51(12):8784–809. doi:10.1007/s10489-021-02359-6
- Omran NF, Abd-El Ghany SF, Saleh H, Ali AA, Gumaei A, Al-Rakhami M. Applying Deep Learning Methods on Time-Series Data for Forecasting COVID-19 in Egypt, Kuwait, and Saudi Arabia. *Complexity* (2021) 2021. doi:10.1155/2021/6686745
- Ben YN, Dhaieddine Kandara M, Bellamine BenSaoud N. Integrating Models and Fusing Data in a Deep Ensemble Learning Method for Predicting Epidemic Diseases Outbreak. *Big Data Res* (2022) 27. doi:10.1016/j.bdr.2021.100286
- Ayoobi N, Sharifrazi D, Alizadehsani R, Shoeibi A, Gorri JM, Moosaei H, et al. Time Series Forecasting of New Cases and New Deaths Rate for COVID-19 Using Deep Learning Methods. *Results Phys* (2021) 27:104495. doi:10.1016/j.rinp.2021.104495
- Shastri S, Singh K, Kumar S, Kour P, Mansotra V. Deep-LSTM Ensemble Framework to Forecast COVID-19: An Insight to the Global Pandemic. *Int J Inf Technology (Singapore)* (2021) 13(4):1291–301. doi:10.1007/s41870-020-00571-0
- Shastri S, Singh K, Deswal M, Sachin K, Mansotra V. CoBiD-Net: A Tailored Deep Learning Ensemble Model for Time Series Forecasting of covid-19. *Spat Inf Res* (2021) 30:9–22. doi:10.1007/s41324-021-00408-3
- Shastri S, Singh K, Kumar S, Kour P, Mansotra V. Time Series Forecasting of COVID-19 Using Deep Learning Models: India-Usa Comparative Case Study. *Chaos Solitons Fractals* (2020) 140. doi:10.1016/j.chaos.2020.110227
- Shetty RP, Pai PS. Forecasting of COVID 19 Cases in Karnataka State Using Artificial Neural Network (ANN). *J The Inst Eng (India) Ser B* (2021) 102(6): 1201–11. doi:10.1007/s40031-021-00623-4
- Li X, Xu X, Wang J, Li J, Qin S, Yuan J. Study on Prediction Model of HIV Incidence Based on GRU Neural Network Optimized by MHPSO. *IEEE Access* (2020) 8:49574–83. doi:10.1109/ACCESS.2020.2979859
- Li Z, Li Y. A Comparative Study on the Prediction of the BP Artificial Neural Network Model and the ARIMA Model in the Incidence of AIDS. *BMC Med Inform Decis Mak* (2020) 20(1):143. doi:10.1186/s12911-020-01157-3
- Zandavi SM, Rashidi TH, Vafaei F. Dynamic Hybrid Model to Forecast the Spread of COVID-19 Using LSTM and Behavioral Models Under Uncertainty. *IEEE Trans Cybern* (2022) 52(11):11977–89. doi:10.1109/TCYB.2021.3120967
- Zeroual A, Harrou F, Dairi A, Sun Y. Deep Learning Methods for Forecasting COVID-19 time-Series Data: A Comparative Study. *Chaos Solitons Fractals* (2020) 140. doi:10.1016/j.chaos.2020.110121
- Zhan C, Zheng Y, Zhang H, Wen Q. Random-Forest-Bagging Broad Learning System with Applications for COVID-19 Pandemic. *IEEE Internet Things J* (2021) 8(21):15906–18. doi:10.1109/JIOT.2021.3066575
- Li Z, Wang Z, Song H, Liu Q, He B, Shi P, et al. Application of a Hybrid Model in Predicting the Incidence of Tuberculosis in a Chinese Population. *Infect Drug Resist* (2019) 12:1011–20. doi:10.2147/IDR.S190418
- Zhang X, Hao Y, Fei ZY, He J. Effect of Meteorological Factors on Incidence of Tuberculosis: A 15-Year Retrospective Study Based on Chinese Medicine Theory of Five Circuits and Six Qi. *Chin J Integr Med* (2015) 21(10):751–8. doi:10.1007/s11655-015-2319-7
- Torrealba-Rodriguez O, Conde-Gutiérrez RA, Hernández-Javier AL. Modeling and Prediction of COVID-19 in Mexico Applying Mathematical and Computational Models. *Chaos Solitons Fractals* (2020) 138:109946. doi:10.1016/j.chaos.2020.109946
- Toharudin T, Pontoh RS, Caraka RE. Indonesia in Facing New Normal: An Evidence Hybrid Forecasting of COVID-19 Cases Using MLP, NNAR and ELM. *Eng Lett* (2021) 29(2).
- Tamang SK, Singh PD, Datta B. Forecasting of Covid-19 Cases Based on Prediction Using Artificial Neural Network Curve Fitting Technique. *Glob J Environ Sci Management* (2020) 6:53–64. doi:10.22034/GJESM.2019.06. SI.06
- Sun J, Chen X, Zhang Z, Lai S, Zhao B, Liu H, et al. Forecasting the Long-Term Trend of COVID-19 Epidemic Using a Dynamic Model. *Scientific Rep* (2020) 10(1):1–10. doi:10.1038/s41598-020-78084-w
- Sultana J, Singha AK, Siddiqui ST, Nagalaxmi G, Sriram AK, Pathak N. COVID-19 Pandemic Prediction and Forecasting Using Machine Learning

Classifiers. *Intell Automation & Soft Comput* (2021) 32(2):1007–24. doi:10.32604/iasc.2022.021507

40. Mehta M, Julaiti J, Griffin P, Kumara S. Early Stage Machine Learning-based Prediction of US County Vulnerability to the COVID-19 Pandemic: Machine Learning Approach. *JMIR Public Health Surveill* (2020) 6(3):e19446. doi:10.2196/19446

41. Hussein T, Hammad MH, Surakhi O, Alkhanafeh M, Fung PL, Zaidan MA, et al. Short-Term and Long-Term COVID-19 Pandemic Forecasting Revisited with the Emergence ofOMICRON Variant in Jordan. *Vaccines (Basel)* (2022) 10(4):569. doi:10.3390/vaccines10040569

42. Huang CJ, Shen Y, Kuo PH, Chen YH. Novel Spatiotemporal Feature Extraction Parallel Deep Neural Network for Forecasting Confirmed Cases of Coronavirus Disease 2019. *Socioecon Plann Sci* (2022) 80:100976. doi:10.1016/j.seps.2020.100976

43. Huamani EL, Ocares-Cunyarachi L. Analysis and Prediction of Recorded COVID-19 Infections in the Constitutional Departments of Peru Using Specialized Machine Learning Techniques. *Int J Emerging Technology Adv Eng* (2021) 11(11). doi:10.46338/ijetae1121\_05

44. Ghazaly NM, Abdel-Fattah MA, Abd El-Aziz AA. Novel Coronavirus Forecasting Model Using Nonlinear Autoregressive Artificial Neural Network. *Int J Adv Sci Technology* (2020) 1831–49. Available online at: <https://api.semanticscholar.org/CorpusID:226691394>.

45. Alsuwaiket MA. Predicting the COVID-19 Spread, Recoveries and Mortalities Rates in Saudi Arabia Using ANN. *J Theor Appl Inf Technol* (2020) 98(23): 3643–53.

46. Abubakar IR, Olatunji SO. Computational Intelligence-Based Model for Diarrhea Prediction Using Demographic and Health Survey Data. *Soft Comput* (2020) 24(7):5357–66. doi:10.1007/s00500-019-04293-9

47. Gollapalli M. Ensemble Machine Learning Model to Predict the Waterborne Syndrome. *Algorithms* (2022) 15(3):93. doi:10.3390/a15030093

48. Toh KB, Bliznyuk N, Valle D. Improving National Level Spatial Mapping of Malaria Through Alternative Spatial and Spatio-Temporal Models. *Spat Spatiotemporal Epidemiol* (2021) 36:100394. doi:10.1016/j.sste.2020.100394

49. Ahmad I, Asad SM. Predictions of Coronavirus COVID-19 Distinct Cases in Pakistan Through Artificial Neural Network. *Epidemiol Infect* (2020). doi:10.1017/S0950268820002174

50. Al-Ridha MY, Anaz AS, Al-Nima RRO. Expecting Confirmed and Death Cases of covid-19 in Iraq by Utilizing Backpropagation Neural Network. *Bull Electr Eng Inform* (2021) 10(4):2137–43. doi:10.11591/eei.v10i4.2876

51. Aravind M, Srinath KR, Maheswari N, Sivagami M. Predicting COVID-19 Cases in Indian States Using Random Forest Regression. *Int J Curr Res Rev* (2021) 13(6 special Issue):S-109–S-114. doi:10.31782/IJCRR.2021.SP185

52. Asfahan S, Gopalakrishnan M, Dutt N, Niwas R, Chawla G, Agarwal M, et al. Using a Simple Open-Source Automated Machine Learning Algorithm to Forecast COVID-19 Spread: A Modelling Study. *Adv Respir Med* (2020) 88(5):400–5. doi:10.5603/ARM.a2020.0156

53. Ayyoubzadeh SM, Ayyoubzadeh SM, Zahedi H, Ahmadi M, Niakan Kalhor SR. Predicting COVID-19 Incidence Through Analysis of Google Trends Data in Iran: Data Mining and Deep Learning Pilot Study. *JMIR Public Health Surveill* (2020) 6(2):e18828. doi:10.2196/18828

54. Ayoub A, Mahboob K, Javed AR, Rizwan M, Gadekallu TR, Abidi MH, et al. Classification and Categorization of COVID-19 Outbreak in Pakistan. *Comput Mater Continua* (2021) 69(1):1253–69. doi:10.32604/cmc.2021.015655

55. Gupta KD, Dwivedi R, Sharma DK. Prediction of COVID-19 Trends in Europe Using Generalized Regression Neural Network Optimized by Flower Pollination Algorithm. *J Interdiscip Mathematics* (2021) 24(1):33–51. doi:10.1080/09720502.2020.1833447

56. Gupta VK, Gupta A, Kumar D, Sardana A. Prediction of COVID-19 Confirmed, Death, and Cured Cases in India Using Random Forest Model. *Big Data Mining and Analytics* (2021) 4(2):116–23. doi:10.26599/bdma.2020.9020016

57. Hamadneh NN, Khan WA, Ashraf W, Atawneh SH, Khan I, Hamadneh BN. Artificial Neural Networks for Prediction of COVID-19 in Saudi Arabia. *Comput Mater Continua* (2021) 66(3):2787–96. doi:10.32604/cmc.2021.013228

58. Harvey D, Valkenburg W, Amara A. Predicting Malaria Epidemics in Burkina Faso with Machine Learning. *PLoS One* (2021) 16(6 June):e0253302. doi:10.1371/journal.pone.0253302

59. Hashim H, Atlam E, Almaliki M, El-agamy R, El-sharkasy MM, Dagnew G, et al. Integrating Data Warehouse and Machine Learning to Predict On COVID-19 Pandemic Empirical Data. *J Theor Appl Inf Technol* (2021) 15(1). Available online at: [www.jatit.org](http://www.jatit.org) (Accessed November 1, 2023).

60. Buczak AL, Baugher B, Guven E, Ramac-Thomas LC, Elbert Y, Babin SM, et al. Fuzzy Association Rule Mining and Classification for the Prediction of Malaria in South Korea Standards, Technology, and Modeling. *BMC Med Inform Decis Mak* (2015) 15(1). doi:10.1186/s12911-015-0170-6

61. Brown BJ, Manescu P, Przybylski AA, Caccioli F, Oyinloye G, Elmi M, et al. Data-Driven Malaria Prevalence Prediction in Large Densely Populated Urban Holoendemic Sub-Saharan West Africa. *Sci Rep* (2020) 10(1):15918. doi:10.1038/s41598-020-72575-6

62. Çaparoğlu ÖF, Ok Y, Tutam M. To Restrict or Not to Restrict? Use of Artificial Neural Network to Evaluate the Effectiveness of Mitigation Policies: A Case Study of Turkey. *Chaos Solitons Fractals* (2021) 151. doi:10.1016/j.chaos.2021.111246

63. Caruso PF, Angelotti G, Greco M, Guzzetta G, Cereda D, Merler S, et al. Early Prediction of SARS-CoV-2 Reproductive Number from Environmental, Atmospheric and Mobility Data: A Supervised Machine Learning Approach. *Int J Med Inform* (2022) 162. doi:10.1016/j.ijmedinf.2022.104755

64. Chandra R, Jain A, Chauhan DS. Deep Learning via LSTM Models for COVID-19 Infection Forecasting in India. *PLoS One* (2022) 17(1 January). doi:10.1371/journal.pone.0262708

65. Chen LP, Zhang Q, Yi GY, He W. Model-Based Forecasting for Canadian COVID-19 Data. *PLoS One* (2021) 16(1 January):e0244536. doi:10.1371/journal.pone.0244536

66. Dairi A, Harrou F, Zeroual A, Hittawe MM, Sun Y. Comparative Study of Machine Learning Methods for COVID-19 Transmission Forecasting. *J. Biomed. Inform.* (2021). 118, 103791. doi:10.1016/j.jb.2021.103791

67. Elsheikh AH, Saba AI, Elaziz MA, Lu S, Shannugan S, Muthuramalingam T, et al. Deep Learning-Based Forecasting Model for COVID-19 Outbreak in Saudi Arabia. *Process Saf Environ Prot* (2021) 149:223–33. doi:10.1016/j.psep.2020.10.048

68. Galasso J, Cao DM, Hochberg R. A Random Forest Model for Forecasting Regional COVID-19 Cases Utilizing Reproduction Number Estimates and Demographic Data. *Chaos Solitons Fractals* (2022) 156. doi:10.1016/j.chaos.2021.111779

69. Fritz C, Dorigatti E, Rügamer D. Combining Graph Neural Networks and Spatio-Temporal Disease Models to Improve the Prediction of Weekly COVID-19 Cases in Germany. *Sci Rep* (2022) 12(1):3930. doi:10.1038/s41598-022-07755-5

70. Hamadneh NN, Tahir M, Khan WA. Using Artificial Neural Network with Prey Predator Algorithm for Prediction of the COVID-19: The Case of Brazil and Mexico. *Mathematics* (2021) 9(2):1–14. doi:10.3390/math9020180

71. Haq I, Hossain MI, Saleheen AAS, Nayan MIH, Mila MS. Prediction of COVID-19 Pandemic in Bangladesh: Dual Application of Susceptible-Infective-Recovered (SIR) and Machine Learning Approach. *Interdiscip Perspect Infect Dis* (2022) 2022:8570089. doi:10.1155/2022/8570089

72. Khurana S, Sharma G, Miglani N, Singh A, Alharbi A, Alosaimi W, et al. An Intelligent Fine-Tuned Forecasting Technique for COVID-19 Prediction Using Neuralprophet Model. *Comput Mater Continua* (2022) 71(1): 629–49. doi:10.32604/cmc.2022.021884

73. Ksantini M, Kadri N, Ellouze A, Turki SH. Artificial Intelligence Prediction Algorithms for Future Evolution of COVID-19 Cases. *Ingénierie des Systèmes d'Information* (2020) 25(3):319–25. doi:10.18280/isi.250305

74. Malinzi J, Gwebu S, Motsa S. Determining COVID-19 Dynamics Using Physics Informed Neural Networks. *Axioms* (2022) 11(3):121. doi:10.3390/axioms11030121

75. Mfisimana LD, Nibayisabe E, Badu K, Niyukuri D. Exploring Predictive Frameworks for Malaria in Burundi. *Infect Dis Model* (2022) 7(2):33–44. doi:10.1016/j.idm.2022.03.003

76. Milivojević MS, Gavrovska A. Long Short-Term Memory Prediction for COVID19 Time Series. *Telfor J* (2021) 13(2):81–6. doi:10.5937/telfor2102081m

77. Migrño JR, Batangan ARU. Using Machine Learning to Create a Decision Tree Model to Predict Outcomes of COVID-19 Cases in the Philippines. *West Pac Surveill Response J* (2021) 12(3):56–64. doi:10.5365/wpsar.2021.12.3.831

78. Mollalo A, Rivera KM, Vahedi B. Artificial Neural Network Modeling of Novel Coronavirus (COVID-19) Incidence Rates Across the Continental United States. *Int J Environ Res Public Health* (2020) 17(12):1–13. doi:10.3390/ijerph17124204

79. Niazkar HR, Niazkar M. Application of Artificial Neural Networks to Predict the COVID-19 Outbreak. *Glob Health Res Policy* (2020) 5(1):50. doi:10.1186/s41256-020-00175-y

80. Ossa LFC, Chamoso P, Arango-López J, Pinto-Santos F, Isaza GA, Santa-Cruz-gonzález C, et al. A Hybrid Model for COVID-19 Monitoring and Prediction. *Electronics (Switzerland)* (2021) 10(7). doi:10.3390/electronics10070799

81. Khayyat M, Laabidi K, Almalki N, Al-Zahrani M. Time Series Facebook Prophet Model and Python for COVID-19 Outbreak Prediction. *Comput Mater Continua* (2021) 67(3):3781–93. doi:10.32604/cmc.2021.014918

82. Purwandari T, Zahroh S, Hidayat Y, Sukono MM, Saputra J. Forecasting Model of COVID-19 Pandemic in Malaysia: An Application of Time Series Approach Using Neural Network. *Decis Sci Lett* (2022) 11(1):35–42. doi:10.5267/j.dsl.2021.10.001

83. Li Q, Yang Y, Wang W, Lee S, Xiao X, Gao X, et al. Unraveling the Dynamic Importance of County-Level Features in Trajectory of COVID-19. *Sci Rep* (2021) 11(1):13058. doi:10.1038/s41598-021-92634-w

84. Liu D, Clemente L, Poirier C, Ding X, Chinazzi M, Davis J, et al. Real-Time Forecasting of the COVID-19 Outbreak in Chinese Provinces: Machine Learning Approach Using Novel Digital Data and Estimates from Mechanistic Models. *J Med Internet Res* (2020) 22(8):e20285. doi:10.2196/20285

85. Renukadevi P, Kannan AR. COVID-19 Forecasting with Deep Learning-Based Half-Binomial Distribution Cat Swarm Optimization. *Computer Syst Sci Eng* (2022) 44(1):629–45. doi:10.32604/csse.2023.024217

86. Ly KT. A COVID-19 Forecasting System Using Adaptive Neuro-Fuzzy Inference. *Financ Res Lett* (2021) 41:101844. doi:10.1016/j.frl.2020.101844

87. Sahai SY, Gurukar S, KhudaBukhsh WR, Parthasarathy S, Rempala GA. A Machine Learning Model for Nowcasting Epidemic Incidence. *Math Biosci* (2022) 343. doi:10.1016/j.mbs.2021.108677

88. Said AB, Erradi A, Aly HA, Mohamed A. Predicting COVID-19 Cases Using Bidirectional LSTM on Multivariate Time Series. *Environ Sci Pollut Res* (2021) 28(40):56043–52. doi:10.1007/s11356-021-14286-7

89. Saqib M. Forecasting COVID-19 Outbreak Progression Using Hybrid Polynomial-Bayesian Ridge Regression Model. *Appl Intelligence* (2022) 51: 2703–13. doi:10.1007/s10489-020-01942-7

90. Nikparvar B, Rahman MM, Hatami F, Thill JC. Spatio-Temporal Prediction of the COVID-19 Pandemic in US Counties: Modeling with a Deep LSTM Neural Network. *Sci Rep* (2021) 11(1):21715. doi:10.1038/s41598-021-01119-3

91. Wang P, Zheng X, Li J, Zhu B. Prediction of Epidemic Trends in COVID-19 with Logistic Model and Machine Learning Techniques. *Chaos Solitons Fractals* (2020) 139. doi:10.1016/j.chaos.2020.110058

92. Warsito B, Widiharih T, Prahutama A. Short Term Prediction of Covid-19 Cases by Using Various Types of Neural Network Model. *Commun Math Biol Neurosci* (2020) 2020:1–16.

93. Pereira IG, Guerin JM, Júnior AGS, Garcia GS, Piscitelli P, Miani A, et al. Forecasting COVID-19 Dynamics in Brazil: A Data Driven Approach. *Int J Environ Res Public Health* (2020) 17(14):1–26. doi:10.3390/ijerph17145115

94. Pérez-Ortega J, Almanza-Ortega NN, Torres-Poveda K, Martínez-González G, Zavala-Díaz JC, Pazos-Rangel R. Application of Data Science for Cluster Analysis of COVID-19 Mortality According to Sociodemographic Factors at Municipal Level in Mexico. *Mathematics* (2022) 10(13). doi:10.3390/math10132167

95. Watson GL, Xiong D, Zhang L, Zoller JA, Shamshoian J, Sundin P, et al. Pandemic Velocity: Forecasting COVID-19 in the US with a Machine Learning & Bayesian Time Series Compartmental Model. *Plos Comput Biol* (2021) 17(3):e1008837. doi:10.1371/journal.pcbi.1008837

96. Yeung AYS, Roewer-Despres F, Rosella L, Rudzic F. Machine Learning-Based Prediction of Growth in Confirmed COVID-19 Infection Cases in 114 Countries Using Metrics of Nonpharmaceutical Interventions and Cultural Dimensions: Model Development and Validation. *J Med Internet Res* (2021) 23(4):e26628. doi:10.2196/26628

97. Yu CS, Chang SS, Chang TH, Wu JL, Lin YJ, Chien HF, et al. A COVID-19 Pandemic Artificial Intelligence-Based System with Deep Learning Forecasting and Automatic Statistical Data Acquisition: Development and Implementation Study. *J Med Internet Res* (2021) 23(5):e27806. doi:10.2196/27806

98. Zhou B, Yang G, Shi Z, Ma S. Interpretable Temporal Attention Network for COVID-19 Forecasting. *Appl Soft Comput* (2022) 120. doi:10.1016/j.asoc.2022.108691

99. Zrieq R, Boubaker S, Kamel S, Alzain M, Alqahtani FD. Analysis and Modeling of COVID-19 Epidemic Dynamics in Saudi Arabia Using SIR-PSO and Machine Learning Approaches. *J Infect Dev Ctries* (2022) 16(1): 90–100. doi:10.3855/jidc.15004

100. Vadylala SR, Betgeri SN, Sherer EA, Amritphale A. Prediction of the Number of COVID-19 Confirmed Cases Based on K-Means-LSTM. *Array* (2021) 11: 100085. doi:10.1016/j.array.2021.100085

101. Wieczorek M, Silka J, Polap D, Wozniak M, Damaševicius R. Real-Time Neural Network Based Predictor for COVID-19 Virus Spread. *PLoS One* (2020) 15(12 December). doi:10.1371/journal.pone.0243189

102. Wieczorek M, Silka J, Woźniak M. Neural Network Powered COVID-19 Spread Forecasting Model. *Chaos Solitons Fractals* (2020) 1:140. doi:10.1016/j.chaos.2020.110203

103. Yesilkanat CM. Spatio-Temporal Estimation of the Daily Cases of COVID-19 in Worldwide Using Random Forest Machine Learning Algorithm. *Chaos Solitons Fractals* (2020) 140. doi:10.1016/j.chaos.2020.110210

104. Yudistira N. COVID-19 Growth Prediction Using Multivariate Long Short Term Memory. *IAENG Int J Comput Sci* (2020) 47(4). doi:10.48550/arXiv.2005.04809

105. Zawbaa HM, El-Gendy A, Saeed H, Osama H, Ali AMA, Gomaa D, et al. A Study of the Possible Factors Affecting COVID-19 Spread, Severity and Mortality and the Effect of Social Distancing on These Factors: Machine Learning Forecasting Model. *Int J Clin Pract* (2021) 75(6):e14116. doi:10.1111/ijcp.14116

106. Gray JD, Harris CR, Wylezinski LS, Spurlock CF. Predictive Modeling of COVID-19 Case Growth Highlights Evolving Racial and Ethnic Risk Factors in Tennessee and Georgia. *BMJ Health Care Inform* (2021) 28(1):e100349. doi:10.1136/bmjhci-2021-100349

107. Marin-Gomez FX, Fàbregas-Escurriola M, Seguí FL, Pérez EH, Camps MB, Peña JM, et al. Assessing the Likelihood of Contracting COVID-19 Disease Based on a Predictive Tree Model: A Retrospective Cohort Study. *PLoS One* (2021) 16(3 March). doi:10.1371/journal.pone.0247995

108. Li B, Quinn RJ, Meghani S, Chittams JL, Rajput V. Segregation Predicts COVID-19 Fatalities in less Densely Populated Counties. *Cureus* (2022). doi:10.7759/cureus.21319

109. Castillo-Olea C, Conte-Galván R, Zuñiga C, Siono A, Huerta A, Bardhi O, et al. Early Stage Identification of COVID-19 Patients in Mexico Using Machine Learning: A Case Study for the Tijuana General Hospital. *Information (Switzerland)* (2021) 12(12). doi:10.3390/info12120490

110. Cui S, Wang Y, Wang D, Sai Q, Huang Z, Cheng TCE. A Two-Layer Nested Heterogeneous Ensemble Learning Predictive Method for COVID-19 Mortality. *Appl Soft Comput* (2021) 113. doi:10.1016/j.asoc.2021.107946

111. Hariharan R. Random Forest Regression Analysis on Combined Role of Meteorological Indicators in Disease Dissemination in an Indian City: A Case Study of New Delhi. *Urban Clim* (2021) 36. doi:10.1016/j.uclim.2021.100780

112. Jamshidnezhad A, Hosseini SA, Ghavamabadi LI, Marashi SMH, Mousavi H, Zilae M, et al. The Role of Ambient Parameters on Transmission Rates of the COVID-19 Outbreak: A Machine Learning Model. *Work* (2021) 70(2): 377–85. doi:10.3233/WOR-210463

113. Kianfar N, Mesgari MS, Mollalo A, Kaveh M. Spatio-Temporal Modeling of COVID-19 Prevalence and Mortality Using Artificial Neural Network Algorithms. *Spat Spatiotemporal Epidemiol* (2022) 40. doi:10.1016/j.sste.2021.100471

114. McCoy D, Mgbara W, Horvitz N, Getz WM, Hubbard A. Ensemble Machine Learning of Factors Influencing COVID-19 Across US Counties. *Scientific Rep* (2021) 11(1):1–14. doi:10.1038/s41598-021-90827-x

115. Snider B, McBean EA, Yawney J, Gadsden SA, Patel B. Identification of Variable Importance for Predictions of Mortality from COVID-19 Using AI Models for Ontario, Canada. *Front Public Health* (2021). doi:10.3389/fpubh.2021.675766

116. Tiwari A, Dadhania AV, Ragunathrao VAB, Oliveira ERA. Using Machine Learning to Develop a Novel COVID-19 Vulnerability Index (C19VI). *Sci Total Environ* (2021) 773:145650. doi:10.1016/j.scitotenv.2021.145650

117. Absar N, Uddin N, Khandaker MU, Ullah H. The Efficacy of Deep Learning Based LSTM Model in Forecasting the Outbreak of Contagious Diseases. *Infect Dis Model* (2022) 7(1):170–83. doi:10.1016/j.idm.2021.12.005

118. Butaru AE, Mămăleanu M, Streba CT, Doica IP, Diculescu MM, Gheonea DI, et al. Resource Management Through Artificial Intelligence in Screening Programs—Key for the Successful Elimination of Hepatitis C. *Diagnostics* (2022) 12(2):346. doi:10.3390/diagnostics12020346

119. Favas C, Jarrett P, Ratnayake R, Watson OJ, Checchi F. Country Differences in Transmissibility, Age Distribution and Case-Fatality of SARS-CoV-2: A Global Ecological Analysis. *Int J Infect Dis* (2022) 114:210–8. doi:10.1016/j.ijid.2021.11.004

120. Cai M, Shah N, Li J, Chen WH, Cuomo RE, Obradovich N, et al. Identification and Characterization of Tweets Related to the 2015 Indiana HIV Outbreak: A Retrospective Infoveillance Study. *Plos ONE Public Libr Sci* (2020) 15: e0235150. doi:10.1371/journal.pone.0235150

121. Cuomo RE, Purushothaman V, Li J, Cai M, Mackey TK. A Longitudinal and Geospatial Analysis of COVID-19 Tweets During the Early Outbreak Period in the United States. *BMC Public Health* (2021) 21(1):793. doi:10.1186/s12889-021-10827-4

122. Cuomo RE, Cai M, Shah N, Li J, Chen WH, Obradovich N, et al. Characterising Communities Impacted by the 2015 Indiana HIV Outbreak: A Big Data Analysis of Social Media Messages Associated with HIV and Substance Abuse. *Drug Alcohol Rev* (2020) 39(7):908–13. doi:10.1111/dar.13091

123. Elkhadrawi M, Stevens BA, Wheeler BJ, Akcakaya M, Wheeler S. Machine Learning Classification of False-Positive Human Immunodeficiency Virus Screening Results. *J Pathol Inform* (2021) 12(1):46. doi:10.4103/jpi.jpi\_7\_21

124. Fan CY, Fann JCY, Yang MC, Lin TY, Chen HH, Liu JT, et al. Estimating Global Burden of COVID-19 with disability-Adjusted Life Years and Value of Statistical Life Metrics. *J Formos Med Assoc* (2021) 120:S106–17. doi:10.1016/j.jfma.2021.05.019

125. Fernandes N, Costa D, Costa D, Keating J, Arantes J. Predicting covid-19 Vaccination Intention: The Determinants of Vaccine Hesitancy. *Vaccines (Basel)* (2021) 9(10):1161. doi:10.3390/vaccines9101161

126. Fung ICH, Jackson AM, Ahwyevuo JO, Grizzle JH, Yin J, Tse ZTH, et al. #Globalhealth Twitter Conversations on #Malaria, #HIV, #TB, #NCDS, and #NTDS: A Cross-Sectional Analysis. *Ann Glob Health* (2017) 83(3–4):682–90. doi:10.1016/j.aogh.2017.09.006

127. Gerts D, Shelley CD, Parikh N, Pitts T, Ross CW, Fairchild G, et al. “Thought I’d Share First” and Other Conspiracy Theory Tweets from the COVID-19 Infodemic: Exploratory Study. *JMIR Public Health Surveill* (2021) 7(4): e26527. doi:10.2196/26527

128. Han Y, Huang J, Li R, Shao Q, Han D, Luo X, et al. Impact Analysis of Environmental and Social Factors on Early-Stage COVID-19 Transmission in China by Machine Learning. *Environ Res* (2022) 208:112761. doi:10.1016/j.envres.2022.112761

129. Jantzen R, Maltais M, Broët P. Socio-Demographic Factors Associated with COVID-19 Vaccine Hesitancy Among Middle-Aged Adults During the Quebec’s Vaccination Campaign. *Front Public Health* (2022). doi:10.3389/fpubh.2022.756037

130. Jung Smok, Endo A, Akhmetzhanov AR, Nishiura H. Predicting the Effective Reproduction Number of COVID-19: Inference Using Human Mobility, Temperature, and Risk Awareness. *Int J Infect Dis* (2021) 113:47–54. doi:10.1016/j.ijid.2021.10.007

131. Zaidi SAJ, Tariq S, Belhaouari SB. Future Prediction of COVID-19 Vaccine Trends Using a Voting Classifier. *Data (Basel)* (2021) 6(11):112. doi:10.3390/data6110112

132. Zheng S, Hu X. Early Warning Method for Public Health Emergency Under Artificial Neural Network in the Context of Deep Learning. *Front Psychol* (2021) 12. doi:10.3389/fpsyg.2021.594031

133. Zhu G, Li J, Meng Z, Yu Y, Li Y, Tang X, et al. Learning from Large-Scale Wearable Device Data for Predicting Epidemics Trend of COVID-19. *Discrete Dyn Nat Soc* (2020) 2020. doi:10.1155/2020/6152041

134. Jiang JY, Zhou Y, Chen X, Jhou YR, Zhao L, Liu S, et al. COVID-19 Surveiller: Toward a Robust and Effective Pandemic Surveillance System Based on Social Media Mining. *Philos Trans A Math Phys Eng Sci* (2022) 380(2214):20210125. doi:10.1098/rsta.2021.0125

135. Chikusi H, Leo J, Kajage S. Machine Learning Model for Prediction and Visualization of HIV Index Testing in Northern Tanzania. *IJACSA Int J Adv Computer Sci Appl* (2022) 13(2):2022. doi:10.14569/ijacsa.2022.0130246

136. Hasan N. A Methodological Approach for Predicting COVID-19 Epidemic Using EEMD-ANN Hybrid Model. *Internet of Things (Netherlands)* (2020) 11:100228. doi:10.1016/j.iot.2020.100228

137. Xylogiannopoulos KF, Karampelas P, Alhajj R. COVID-19 Pandemic Spread Against Countries’ Non-Pharmaceutical Interventions Responses: A Data-Mining Driven Comparative Study. *BMC Public Health* (2021) 21(1):1607. doi:10.1186/s12889-021-11251-4

138. Marvel SW, House JS, Wheeler M, Song K, Zhou YH, Wright FA, et al. The COVID-19 Pandemic Vulnerability Index (PVI) Dashboard: Monitoring County-Level Vulnerability Using Visualization, Statistical Modeling, and Machine Learning. *Environ Health Perspect* (2021) 129(1):017701-1–017701-3. doi:10.1289/EHP8690

139. Pérez Abreu CR, Estrada S, De-La-torre-gutiérrez H. A Two-Step Polynomial and Nonlinear Growth Approach for Modeling covid-19 Cases in Mexico. *Mathematics* (2021) 9(18). doi:10.3390/math9182180

140. Tajmouati S, Wahbi BE, Dakkon M. Modeling COVID-19 Confirmed Cases Using a Hybrid Model. *Adv Decis Sci* (2022) 26(1):128–62. doi:10.47654/v26y2022i1p128-162

141. Xu L, Magar R, Barati FA. Forecasting COVID-19 New Cases Using Deep Learning Methods. *Comput Biol Med* (2022) 144. doi:10.1016/j.combiomed.2022.105342

142. Tuli S, Tuli S, Tuli R, Gill SS. Predicting the Growth and Trend of COVID-19 Pandemic Using Machine Learning and Cloud Computing. *Internet of Things (Netherlands)* (2020) 11:100222. doi:10.1016/j.iot.2020.100222

143. Shahid F, Zameer A, Muneeb M. Predictions for COVID-19 with Deep Learning Models of LSTM, GRU and Bi-LSTM. *Chaos Solitons Fractals* (2020) 1:140. doi:10.1016/j.chaos.2020.110212

144. Rauf HT, Lali MIU, Khan MA, Kadry S, Alolaiyan H, Razaq A, et al. Time Series Forecasting of COVID-19 Transmission in Asia Pacific Countries Using Deep Neural Networks. *Pers Ubiquitous Comput* (2023) 27(3): 733–50. doi:10.1007/s00779-020-01494-0

145. Rahmadani F, Lee H. Hybrid Deep Learning-Based Epidemic Prediction Framework of COVID-19: South Korea Case. *Appl Sci (Switzerland)* (2020) 10(23):1–21. doi:10.3390/app10238539

146. Quilodrán-Casas C, Silva VLS, Arcucci R, Heaney CE, Guo YK, Pain CC. Digital Twins Based on Bidirectional LSTM and GAN for Modelling the COVID-19 Pandemic. *Neurocomputing* (2022) 470:11–28. doi:10.1016/j.neucom.2021.10.043

147. Raheja S, Kasturia S, Cheng X, Kumar M. Machine Learning-Based Diffusion Model for Prediction of Coronavirus-19 Outbreak. *Neural Comput Appl* (2023) 35(19):13755–74. doi:10.1007/s00521-021-06376-x

148. Pourghasemi HR, Pouyan S, Heidari B, Farajzadeh Z, Fallah Shamsi SR, Babaei S, et al. Spatial Modeling, Risk Mapping, Change Detection, and Outbreak Trend Analysis of Coronavirus (COVID-19) in Iran (Days Between February 19 and June 14, 2020). *Int J Infect Dis* (2020) 98:90–108. doi:10.1016/j.ijid.2020.06.058

149. Prasanth S, Singh U, Kumar A, Tikkiwal VA, Chong PHJ. Forecasting Spread of COVID-19 Using Google Trends: A Hybrid GWO-Deep Learning Approach. *Chaos Solitons Fractals* (2021) 142. doi:10.1016/j.chaos.2020.110336

150. Oshinubi K, Amakor A, Peter OJ, Rachdi M, Demongeot J. Approach to COVID-19 Time Series Data Using Deep Learning and Spectral Analysis Methods. *AIMS Bioeng* (2021) 9(1):1–21. doi:10.3934/bioeng.2022001

151. Oshinubi K, Al-Awadhi F, Rachdi M, Demongeot J. Data Analysis and Forecasting of COVID-19 Pandemic in Kuwait Based on Daily Observation and Basic Reproduction Number Dynamics. *Kuwait J Sci* (2021). doi:10.48129/kjs.splcov.14501

152. Niraula P, Mateu J, Chaudhuri S. A Bayesian Machine Learning Approach for Spatio-Temporal Prediction of COVID-19 Cases. *Stochastic Environ Res Risk Assess* (2022) 36(8):2265–83. doi:10.1007/s00477-021-02168-w

153. Nguyen DQ, Vo NQ, Nguyen TT, Nguyen-An K, Nguyen QH, Tran DN, et al. BeCaked: An Explainable Artificial Intelligence Model for COVID-19 Forecasting. *Sci Rep* (2022) 12(1):7969. doi:10.1038/s41598-022-11693-9

154. Utsunomiya YT, Utsunomiya ATH, Torrecilha RBP, Paulan Sde C, Milanesi M, Garcia JF. Growth Rate and Acceleration Analysis of the COVID-19 Pandemic Reveals the Effect of Public Health Measures in Real Time. *Front Med (Lausanne)* (2020) 7:247. doi:10.3389/fmed.2020.00247

155. Naeem M, Yu J, Aamir M, Khan SA, Adeleye O, Khan Z. Comparative Analysis of Machine Learning Approaches to Analyze and Predict the COVID-19 Outbreak. *Peerj Comput Sci* (2021) 7:e746. doi:10.7717/peerj.cs.746

156. Mansour S, Abulibdeh A, Alahmadi M, Ramadan E. Spatial Assessment of COVID-19 First-Wave Mortality Risk in the Global South. *Prof Geographer* (2022) 74(3):440–58. doi:10.1080/00330124.2021.2009888

157. Ture M, Kurt I. Comparison of Four Different Time Series Methods to Forecast Hepatitis A Virus Infection. *Expert Syst Appl* (2006) 31(1):41–6. doi:10.1016/j.eswa.2005.09.002

158. Satu MS, Howlader KC, Mahmud M, Shamim Kaiser M, Islam SMS, Quinn JMW, et al. Short-Term Prediction of COVID-19 Cases Using Machine Learning Models. *Appl Sci (Switzerland)* (2021) 11(9):4266. doi:10.3390/app11094266

159. Mahmud SKG, Mishu MC, Nandi D. Predicting Spread, Recovery and Death due to COVID-19 Using a Time-Series Model (Prophet). *AIUB J Sci Eng* (2021) 20:71–6. doi:10.53799/ajse.v20i1.152

160. Liu F, Wang J, Liu J, Li Y, Liu D, Tong J, et al. Predicting and Analyzing the COVID-19 Epidemic in China: Based on SEIRD, LSTM and GWR Models. *PLoS One* (2020) 15(8 August):e0238280. doi:10.1371/journal.pone.0238280

161. Rahman M, Ahmed MT, Nur S, Touhidul Islam AZM. The Prediction of Coronavirus Disease 2019 Outbreak on Bangladesh Perspective Using Machine Learning: A Comparative Study. *Int J Electr Computer Eng* (2022) 12(4):4276–87. doi:10.11591/ijece.v12i4.pp4276-4287

162. Kuo CP, Fu JS. Evaluating the Impact of Mobility on COVID-19 Pandemic with Machine Learning Hybrid Predictions. *Sci Total Environ* (2021) 758. doi:10.1016/j.scitotenv.2020.144151

163. Krivorotko O, Sosnovskaia M, Vashchenko I, Kerr C, Lesnic D. Agent-Based Modeling of COVID-19 Outbreaks for New York State and UK: Parameter Identification Algorithm. *Infect Dis Model* (2022) 7(1):30–44. doi:10.1016/j.idm.2021.11.004

164. Price BS, Khodaverdi M, Halasz A, Hendricks B, Kimble W, Smith GS, et al. Predicting Increases in COVID-19 Incidence to Identify Locations for Targeted Testing in West Virginia: A Machine Learning Enhanced Approach. *PLoS One* (2021) 16(11 November):e0259538. doi:10.1371/journal.pone.0259538

165. Khan IM, Haque U, Zhang W, Zafar S, Wang Y, He J, et al. COVID-19 in China: Risk Factors and R0 Revisited. *Acta Trop* (2021) 213. doi:10.1016/j.actatropica.2020.105731

166. Kalantari M. Forecasting COVID-19 Pandemic Using Optimal Singular Spectrum Analysis. *Chaos Solitons Fractals* (2021) 142. doi:10.1016/j.chaos.2020.110547

167. Nazari J, Fathi PS, Sharahi N, Taheri M, Amini P, Almasi-Hashiani A. Evaluating Measles Incidence Rates Using Machine Learning and Time Series Methods in the Center of Iran, 1997–2020. *Iran J Public Health* (2022) 51:904–12. doi:10.18502/ijph.v51i4.9252

168. Nayan AA, Kijisirikul B, Iwahori Y. Coronavirus Disease Situation Analysis and Prediction Using Machine Learning: A Study on Bangladeshi Population. *Int J Electr Computer Eng* (2022) 12(4):4217–27. doi:10.11591/ijece.v12i4. pp4217-4227

169. Majhi R, Thangeda R, Sugasi RP, Kumar N. Analysis and Prediction of COVID-19 Trajectory: A Machine Learning Approach. *J Public Aff* (2021) 21(4):e2537. doi:10.1002/pa.2537

170. Lucas TCD, Nandi AK, Keddie SH, Chestnutt EG, Howes RE, Rumisha SF, et al. Improving Disaggregation Models of Malaria Incidence by Ensembling Non-Linear Models of Prevalence. *Spat Spatiotemporal Epidemiol* (2022) 41. doi:10.1016/j.sste.2020.100357

171. Lucas B, Vahedi B, Karimzadeh M. A Spatiotemporal Machine Learning Approach to Forecasting COVID-19 Incidence at the County Level in the USA. *Int J Data Sci Anal* (2023) 15(3):247–66. doi:10.1007/s41060-021-00295-9

172. Lounis M, Torrealba-Rodriguez O, Conde-Gutiérrez RA. Predictive Models for COVID-19 Cases, Deaths and Recoveries in Algeria. *Results Phys* (2021) 30. doi:10.1016/j.rinp.2021.104845

173. Likassa HT, Xain W, Tang X, Gobebo G. Predictive Models on COVID-19: What Africans Should Do? *Infect Dis Model* (2021) 6:302–12. doi:10.1016/j.idm.2020.10.015

174. Fernandes da Silva C, Candido Junior A, Pedro Lopes R. Predictive Analysis of COVID-19 Symptoms in Social Networks Through Machine Learning. *Electronics (Basel)* (2022) 11(4):580. doi:10.3390/electronics11040580

175. Khakharia A, Shah V, Jain S, Shah J, Tiwari A, Daphal P, et al. Outbreak Prediction of COVID-19 for Dense and Populated Countries Using Machine Learning. *Ann Data Sci* (2021) 8(1):1–19. doi:10.1007/s40745-020-00314-9

176. Kao IH, Perng JW. Early Prediction of Coronavirus Disease Epidemic Severity in the Contiguous United States Based on Deep Learning. *Results Phys* (2021). doi:10.1016/j.rinp.2021.104287

177. Jiang G, Wu J, Weidhaas J, Li X, Chen Y, Mueller J, et al. Artificial Neural Network-Based Estimation of COVID-19 Case Numbers and Effective Reproduction Rate Using Wastewater-Based Epidemiology. *Water Res* (2022) 218:118451. doi:10.1016/j.watres.2022.118451

178. Andelić N, Šegota SB, Lorencin I, Mrzljak V, Car Z. Estimation of COVID-19 Epidemic Curves Using Genetic Programming Algorithm. *Health Inform J* (2021) 27(1):1–40. doi:10.1177/1460458220976728

179. Fang X, Liu W, Ai J, He M, Wu Y, Shi Y, et al. Forecasting Incidence of Infectious Diarrhea Using Random Forest in Jiangsu Province, China. *BMC Infect Dis* (2020) 20(1):222. doi:10.1186/s12879-020-4930-2

180. Abdullahi T, Nitschke G, Sweijd N. Predicting Diarrhoea Outbreaks with Climate Change. *PLoS One* (2022) 17(4 April):e0262008. doi:10.1371/journal.pone.0262008

181. Jia W, Wan Y, Li Y, Tan K, Lei W, Hu Y, et al. Integrating Multiple Data Sources and Learning Models to Predict Infectious Diseases in China. *AMIA Summits Translational Sci Proc* (2019) 2019:680–5.

182. Abdullah WD, Jasim AA, Hazim LR. Predictions and Visualization for Confirmed, Recovered and Deaths COVID-19 Cases in Iraq. *Indonesian J Electr Eng Computer Sci* (2022) 26(2):1197–205. doi:10.11591/ijeeecs.v26.i2. pp1197-1205

183. Al MRH, Omar E, Taha K, Al-Sharif M, Aref A. Covid-19 Global Spread Analyzer: An ML-based Attempt. *J Computer Sci* (2020) 16(9):1291–305. doi:10.3844/jcsp.2020.1291.1305

184. Almazroi AA, Usmani RSA. COVID-19 Cases Prediction in Saudi Arabia Using Tree-Based Ensemble Models. *Intell Automation Soft Comput* (2022) 32(1):389–400. doi:10.32604/iasc.2022.020588

185. Al-Qaness MAA, Ewees AA, Fan H, Abualigah L, Elaziz MA. Marine Predators Algorithm for Forecasting Confirmed Cases of COVID-19 in Italy, USA, Iran and Korea. *Int J Environ Res Public Health* (2020) 17(10). doi:10.3390/ijerph17103520

186. Alshabeeb IA, Majed Azeez R, Mohammed W, Shakir R. Machine Learning Techniques and Forecasting Methods for Analyzing and Predicting COVID-19. *Int J Mathematics Computer Sci* (2022) 17. Available online at: <http://ijmcs.future-in-tech.net> (Accessed November 1, 2023).

187. Al-Qaness MAA, Ewees AA, Fan H, El Aziz MA. Optimization Method for Forecasting Confirmed Cases of COVID-19 in China. *J Clin Med* (2020) 9(3). doi:10.3390/jcm9030674

188. Alzahrani SI, Aljamaan IA, Al-Fakih EA. Forecasting the Spread of the COVID-19 Pandemic in Saudi Arabia Using ARIMA Prediction Model Under Current Public Health Interventions. *J Infect Public Health* (2020) 13(7):914–9. doi:10.1016/j.jiph.2020.06.001

189. Althomsons SP, Winglee K, Heilig CM, Talarico S, Silk B, Wortham J, et al. Using Machine Learning Techniques and National Tuberculosis Surveillance Data to Predict Excess Growth in Genotyped Tuberculosis Clusters. *Am J Epidemiol* (2022) 191(11):1936–43. doi:10.1093/aje/kwac117

190. An Q, Wu J, Meng J, Zhao Z, Bai JJ, Li X. Using the Hybrid EMD-BPNN Model to Predict the Incidence of HIV in Dalian, Liaoning Province, China, 2004–2018. *BMC Infect Dis* (2022) 22(1):102. doi:10.1186/s12879-022-07061-7

191. Antweiler D, Sessler D, Rossknecht M, Abb B, Ginzel S, Kohlhammer J. Uncovering Chains of Infections Through Spatio-Temporal and Visual Analysis of COVID-19 Contact Traces. *Comput Graphics (Pergamon)* (2022) 106:1–8. doi:10.1016/j.cag.2022.05.013

192. Arora R, Agrawal A, Arora R, Poonia RC, Madaan V. Prediction and Forecasting of COVID-19 Outbreak Using Regression and ARIMA

Models. *J Interdiscip Mathematics* (2021) 24(1):227–43. doi:10.1080/09720502.2020.1840075

193. Atencia M, García-Garaluz E, de Arazoza H, Joya G. Estimation of Parameters Based on Artificial Neural Networks and Threshold of HIV/AIDS Epidemic System in Cuba. *Math Comput Model* (2013) 57(11–12):2971–83. doi:10.1016/j.mcm.2013.03.007

194. Arlis S, Defit S. Machine Learning Algorithms for Predicting the Spread of Covid–19 in Indonesia. *TEM J* (2021) 10(2):970–4. doi:10.18421/tem102-61

195. Berhich A, Jebli I, Mbilong PM, El Kassiri A, Belouadha FZ. Multiple Output and Multi-Steps Prediction of COVID-19 Spread Using Weather and Vaccination Data. *Ingenierie des Systèmes d'Information* (2021) 26(5):425–36. doi:10.18280/isi.260501

196. Babu MA, Ahmed MM, Ferdousi A, Mostafizur Rahman M, Saiduzzaman M, Bhatnagar V, et al. The Mathematical and Machine Learning Models to Forecast the COVID-19 Outbreaks in Bangladesh. *J Interdiscip Mathematics* (2022) 25(3):753–72. doi:10.1080/09720502.2021.2015095

197. Fakhry NN, Kassam G, Asfoua E. Tracking Coronavirus Pandemic Diseases Using Social Media: A Machine Learning Approach. *Vol. 11, IJACSA Int J Adv Computer Sci Appl* (2020). doi:10.14569/IJACSA.2020.0111028

198. Guo Y, Feng Y, Qu F, Zhang L, Yan B, Lv J. Prediction of Hepatitis E Using Machine Learning Models. *PLoS One* (2020) 15(9 September):e0237750. doi:10.1371/journal.pone.0237750

199. Frauenfeld L, Nann D, Sulyok Z, Feng YS, Sulyok M. Forecasting Tuberculosis Using Diabetes-Related Google Trends Data. *Pathog Glob Health* (2020) 114(5):236–41. doi:10.1080/20477724.2020.1767854

200. Gupta M, Jain R, Arora S, Gupta A, Awan MJ, Chaudhary G, et al. AI-Enabled COVID-19 Outbreak Analysis and Prediction: Indian States Vs. Union Territories. *Comput Mater Continua* (2021) 67(1):933–50. doi:10.32604/cmc.2021.014221

201. Gupta M, Jain R, Gupta A, Jain K. Real-Time Analysis of COVID-19 Pandemic on Most Populated Countries Worldwide. *CMES - Computer Model Eng Sci* (2020) 125(3):943–65. doi:10.32604/cmes.2020.012467

202. Alkhammash EH, Algethami H, Alshahrani R. Novel Prediction Model for COVID-19 in Saudi Arabia Based on an LSTM Algorithm. *Comput Intell Neurosci* (2021) 2021:6089677. doi:10.1155/2021/6089677

203. Al-Qaness MAA, Saba AI, Elsheikh AH, Elaziz MA, Ibrahim RA, Lu S, et al. Efficient Artificial Intelligence Forecasting Models for COVID-19 Outbreak in Russia and Brazil. *Process Saf Environ Prot* (2021) 149:399–409. doi:10.1016/j.psep.2020.11.007

204. Amar LA, Taha AA, Mohamed MY. Prediction of the Final Size for COVID-19 Epidemic Using Machine Learning: A Case Study of Egypt. *Infect Dis Model* (2020) 5:622–34. doi:10.1016/j.idm.2020.08.008

205. Angelis M, Neofotistos G, Mattheakis M, Kaxiras E. Modeling the Effect of the Vaccination Campaign on the COVID-19 Pandemic. *Chaos Solitons Fractals* (2022) 154. doi:10.1016/j.chaos.2021.111621

206. Arik S, Shor J, Sinha R, Yoon J, Ledsam JR, Le LT, et al. A Prospective Evaluation of AI-Augmented Epidemiology to Forecast COVID-19 in the USA and Japan. *NPJ Digit Med* (2021) 4(1):146. doi:10.1038/s41746-021-00511-7

207. ArunKumar KE, Kalagot DV, Sai Kumar CM, Chilkkoor G, Kawaji M, Brenza TM. Forecasting the Dynamics of Cumulative COVID-19 Cases (Confirmed, Recovered and Deaths) for Top-16 Countries Using Statistical Machine Learning Models: Auto-Regressive Integrated Moving Average (ARIMA) and Seasonal Auto-Regressive Integrated Moving Average (SARIMA). *Appl Soft Comput* (2021) 103. doi:10.1016/j.asoc.2021.107161

208. Avirappattu G, Pach A, Locklear CE, Briggs AQ. An Optimized Machine Learning Model for Identifying Socio-Economic, Demographic and Health-Related Variables Associated with Low Vaccination Levels that Vary Across ZIP Codes in California. *Prev Med Rep* (2022) 28. doi:10.1016/j.pmedr.2022.101858

209. Behnood A, Mohammadi Golafshani E, Hosseini SM. Determinants of the Infection Rate of the COVID-19 in the U.S. Using ANFIS and Virus Optimization Algorithm (VOA). *Chaos Solitons Fractals* (2020) 139. doi:10.1016/j.chaos.2020.110051

210. Bloise F, Tancioni M. Predicting the Spread of COVID-19 in Italy Using Machine Learning: Do Socio-Economic Factors Matter? *Struct Change Econ Dyn* (2021) 56:310–29. doi:10.1016/j.strueco.2021.01.001

211. Devaraj J, Madurai Elavarasan R, Pugazhendhi R, Shafiullah GM, Ganesan S, Jeysree AK, et al. Forecasting of COVID-19 Cases Using Deep Learning Models: Is It Reliable and Practically Significant? *Results Phys* (2021) 21:103817. doi:10.1016/j.rinp.2021.103817

212. Gupta KD, Dwivedi R, Sharma DK. Predicting and Monitoring COVID-19 Epidemic Trends in India Using Sequence-to-Sequence Model and an Adaptive SEIR Model. *Open Computer Sci* (2022) 12(1):27–36. doi:10.1515/comp-2020-0221

213. Grekousis G, Feng Z, Marakakis I, Lu Y, Wang R. Ranking the Importance of Demographic, Socioeconomic, and Underlying Health Factors on US COVID-19 Deaths: A Geographical Random Forest Approach. *Health Place* (2022) 74:102744. doi:10.1016/j.healthplace.2022.102744

214. Gupta R, Pandey G, Pal SK. Comparative Analysis of Epidemiological Models for COVID-19 Pandemic Predictions. *Biostat Epidemiol* (2021) 5(1):69–91. doi:10.1080/24709360.2021.1913709

215. Kafieh R, Arian R, Saeedizadeh N, Amini Z, Serej ND, Minaee S, et al. COVID-19 in Iran: Forecasting Pandemic Using Deep Learning. *Comput Math Methods Med* (2021) 2021:6927985. doi:10.1155/2021/6927985

216. Kafieh R, Saeedizadeh N, Arian R, Amini Z, Serej ND, Vaezi A, et al. Isfahan and COVID-19: Deep Spatiotemporal Representation. *Chaos Solitons Fractals* (2020) 141. doi:10.1016/j.chaos.2020.110339

217. Kaliappan J, Srinivasan K, Mian QS, Sundararajan K, Chang CY, Suganthan C. Performance Evaluation of Regression Models for the Prediction of the COVID-19 Reproduction Rate. *Front Public Health* (2021) 9. doi:10.3389/fpubh.2021.729795

218. Kalezhi J, Chibuluma M, Chembe C, Chama V, Lungo F, Kunda D. Modelling COVID-19 Infections in Zambia Using Data Mining Techniques. *Results Eng* (2022) 13. doi:10.1016/j.rineng.2022.100363

219. Kapwata T, Gebreslasie MT. Random Forest Variable Selection in Spatial Malaria Transmission Modelling in Mpumalanga Province, South Africa. *Geospat Health* (2016) 11(3):251–62. doi:10.4081/gh.2016.434

220. Kiang R, Adimi F, Soika V, Nigro J, Singhasivanon P, Sirichaisinthip J, et al. (2006). *Meteorol Environmental Remote Sensing Neural Network Analysis Epidemiology Malaria Transmission Thailand*. Geospatial Health 1. doi:10.4081/gh.2006.282

221. Lee D, Kim M, Choo H, Shin SY. Symptom-Based COVID19 Screening Model Combined with Surveillance Information. In: *Studies in Health Technology and Informatics*. IOS Press BV (2022). p. 719–20. doi:10.3233/SHT220569

222. Soyirin IN, Reidpath DD. An Overview of Health Forecasting. *Environ Health Prev Med* (2013) 18(1):1–9. doi:10.1007/s12199-012-0294-6

223. Data Quality Considerations. (PDF) Data Quality Considerations for Big Data and Machine Learning: Going Beyond Data Cleaning and Transformations. Available online at: [https://www.researchgate.net/publication/318432363\\_Data\\_Quality\\_Considerations\\_for\\_Big\\_Data\\_and\\_Machine\\_Learning\\_Going\\_Beyond\\_Data\\_Cleaning\\_and\\_Transformations](https://www.researchgate.net/publication/318432363_Data_Quality_Considerations_for_Big_Data_and_Machine_Learning_Going_Beyond_Data_Cleaning_and_Transformations) (Accessed May 22, 2024).

224. Lu SC, Swisher CL, Chung C, Jaffray D, Sidey-Gibbons C. On the Importance of Interpretable Machine Learning Predictions to Inform Clinical Decision Making in Oncology. *Front Oncol* (2023) 13:1129380. doi:10.3389/fonc.2023.1129380

Copyright © 2026 Birdi, Patel, Rabet, Singh, Durant, Vosoughi, Kapra, Shergill, Mesfin, Ziegler, Ali, Buckeridge, Ghassemi, Gibson, John-Baptiste, Macklin, Mccradden, Mckenzie, Mishra, Naraei, Owusu-Bempah, Rosella, Shaw, Upshur and Pinto. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

PHR is edited by the Swiss School of Public Health (SSPH+) in a partnership with the Association of Schools of Public Health of the European Region (ASPERH)+