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Objectives: Communicable diseases continue to threaten global health, with COVID-19
as a recent example. Rapid data analysis using machine learning (ML) is crucial for
detecting and controlling outbreaks. We aimed to identify how ML approaches have been
applied to achieve public health objectives in communicable disease control and to explore
algorithmic biases in model design, training, and implementation, and strategies to mitigate
these biases.
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Methods: We searched MEDLINE, Embase, Cochrane Central, Scopus, ACM DL,
INSPEC, and Web of Science to identify peer-reviewed studies from 1 January 2000,
to 15 July 2022. Included studies applied ML models in population and public health to
address ten communicable diseases with high prevalence.

Results: 28,378 citations were retrieved, and 209 met our inclusion criteria. ML for
communicable diseases has risen since 2020, particularly for SARS-CoV-2 (n = 177),
followed by malaria, HIV, and tuberculosis. Eighteen studies (8.61%) considered bias, and

Conclusion: A growing number of studies used ML for disease surveillance. Addressing
biases in model design should be prioritized in future research to improve reliability and

Keywords: public health, communicable diseases, machine learning, artificial intelligence, population health,
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only eleven implemented mitigation strategies.
equity in public health outcomes.
scoping review

INTRODUCTION

Communicable diseases, caused by pathogenic microorganisms
such as viruses, bacteria, parasites, or fungi, remain a significant
global public health threat [1]. Despite advances in medicine and
sanitation, communicable diseases account for a substantial share
of the global disease burden [2]. According to the World Health
Organization (WHO), communicable diseases, including lower
respiratory infections, diarrheal diseases, and tuberculosis were
responsible for 8 of the top 10 causes of death in low-income
countries in 2021 [3]. The COVID-19 pandemic further
underscored the health, economic, and social impacts of
emerging pathogens.

Machine learning (ML) has the potential to transform
communicable disease management by enabling early
detection and prediction of outbreaks and pandemics [4, 5]. In
healthcare, ML is increasingly used to process and identify
patterns in large amounts of data from electronic health
records and wearable devices [4]. In public health, ML
algorithms can analyze complex interactions in data from
multiple sources to support more accurate predictions of
emerging health threats, to define the scale of an outbreak,
and to rapidly evaluate communicable disease control
interventions [6, 7]. These models have seen wide application
during the COVID-19 pandemic, where they were used to
forecast trends, support clinical decisions, and guide resource
allocation [6, 8]. [6, 8, 9] However, the extent of use of ML in
population and public health remains unclear, highlighting the
need for a comprehensive review of recent approaches in
this field.

The objective of this study was to conduct a scoping review to
identify studies that use ML to address population and public
health challenges related to communicable diseases. Themes
explored included whether and how teams considered bias
during the design, training, and implementation of ML
models. Given the well-documented risks of bias in the
development and implementation of ML models for public

health, we prioritized this aspect to underscore the importance
of fairness and equity in model outcomes.

METHODS

This scoping review followed the Arksey and O’Malley guidelines
for scoping reviews [10, 11] and the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses Extension for Scoping
Reviews (PRISMA-ScR) guidelines [12]. Our protocol was
published by the Open Science Framework (https://osf.io/
xydut/).

Search Strategy

An experienced information specialist (CZ) helped develop
and conduct a comprehensive search of the peer-reviewed,
indexed literature. The following databases were searched
from 1 January 2000, to 15 July 2022: Medline (Ovid),
Embase (Ovid), Cochrane Central Register of Controlled
Trials and Cochrane Database of Systematic Reviews
(Ovid), Scopus, ACM Digital Library, INSPEC, and Web of
Science’s Science Citation Index, Social Sciences Citation
Index, and Emerging Sources Citation Index. The
publication date ranged from 2000 to 2022 was selected to
capture ML models that leverage modern computing
techniques and recent data advancements. The search used
a combination of subject headings and keywords, adapted for
each database, for the broad concepts of artificial intelligence
combined with the following communicable diseases: lower
respiratory infections, diarrheal diseases, tuberculosis, HIV,
malaria, meningitis, measles, pertussis (whooping cough),
hepatitis, SARS-CoV-2. All languages were included in the
search (Supplementary Material S2). We limited our search
to these 10 specific communicable diseases based on their high
global prevalence and public health impact [3]. These diseases
were selected to provide a focused analysis while ensuring
relevance to current population health priorities.
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FIGURE 1 | Selection process of eligible studies from all identified citations (Toronto, Canada, 2026).

Eligibility Criteria

To be eligible, studies had to meet the following criteria
during both title/abstract and full-text screening: (1) focus on
population-level implications or adopt a public health
approach; (2) address at least one of the following
conditions: lower respiratory infections, diarrheal diseases,
tuberculosis, HIV, malaria, meningitis, measles, pertussis
(whooping cough), hepatitis, or SARS-CoV-2; (3) utilize at
least one ML model to tackle a real-world population or
public health challenge. There were no language restrictions,
and all study designs, except for review articles, were
considered.

Studies were excluded if: (1) they did not have population-
wide implications or a public health approach; (2) they did
not focus on any of the conditions listed in the inclusion
criteria or focused only on complications and related
conditions; (3) no real-world data was used; or (4) they
were commentaries, letters, editorials, conference
proceedings, or dissertations.

Study Selection and Data

Collection Process

Citations from all databases were imported into DistillerSR [13]
for the initial title and abstract review. Each citation was reviewed
independently by two reviewers (RR, TV, AP, EM, NS) using the
eligibility criteria to determine inclusion or exclusion for full-text
review. Any conflicts during this process were solved through
discussion with a third author (SB). Full articles were retrieved for
further eligibility screening, and studies that met the eligibility
criteria were included. The final set of studies included in this
scoping review includes only those that passed the full-text
screening process. Five members of the study team assisted
with data extraction (RR, TV, AP, EM, NS).

The following data were extracted: author(s), title, journal,
publication year, ML application type(s), the intended purpose of
ML, study design, intervention (if applicable), results,
jurisdiction, data sources, unit(s) of analysis, sample size,
demographics, identification of any potential algorithmic bias
in the ML model (biases related to gender, sex, ethnicity,
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TABLE 1 | Distribution of studies by country where research on machine learning in
population or public health occurred (Toronto, Canada, 2026).

Country Frequency Percentage (%)
Algeria 1 0.48
Bangladesh 5 2.39
Brazil 1 0.48
Burkina Faso 1 0.48
Burundi 1 0.48
Canada 3 1.44
China 15 7.18
Colombia 1 0.48
Egypt 1 0.48
Eswatini 1 0.48
France 1 0.48
Germany 3 1.44
India 18 8.61
Indonesia 3 1.44
Iran 8 3.83
Iraq 3 1.44
Israel 1 0.48
Italy 2 0.96
Japan 1 0.48
Jordon 1 0.48
Kuwait 1 0.48
Malaysia 1 0.48
Mexico 5 2.39
Nigeria 2 0.96
Pakistan 4 1.91
Peru 1 0.48
Philippines 1 0.48
Portugal 1 0.48
Qatar 1 0.48
Romania 1 0.48
Saudi Arabia 8 3.83
Serbia 1 0.48
Somalia 1 0.48
South Africa 2 0.96
South Korea 3 1.44
Spain 3 1.44
Taiwan 1 0.48
Tanzania 1 0.48
Thailand 1 0.48
Turkey 3 1.44
US.A. 31 14.83
UK. 2 0.96
Ukraine 1 0.48
Zambia 1 0.48

socioeconomic status), transferability to low- and middle-income
countries, bias mitigation strategies, CDs targeted, target
population and setting, intended users, and impact reported
by the author. We also noted if information was unavailable
from an article or if any additional sources of algorithmic bias
(e.g., age-related bias) were discussed.

Data Synthesis

We used a narrative synthesis to review and summarize the
objectives, ML algorithms, and relevance of each study. We
focused on how these studies used ML to characterize and
detect communicable disease cases and outbreaks, detailing the
application and implications of using ML algorithms on specific
communicable diseases. We organized the studies by the

ML for Communicable Disease Control

communicable disease explored and identified common
limitations found in the studies, such as small data sets and
generalizability issues.

RESULTS

Study Selection and Characteristics

Our initial search identified 47,310 citations. After removing
18,932 duplicates, 28,378 citations were double-screened.
Following title and abstract screening, 603 studies were
included for full-text review. Following full-text screening,
394 of these studies were excluded, leaving 209 studies that
met our criteria for this review (Figure 1).

The number of studies using ML in communicable disease
control at the population level or for public health purposes has
increased over time. The first study was published in 2005, and
only 10 (4.8%) studies were published between 2000-2015, and
most studies (n = 199, 95.2%) were published between 2020 and
2023. A large number of studies were conducted by teams in the
USA (n =31, 14.8%), India (n = 18, 8.6%) or China (n = 15, 7.2%),
but ML approaches are now common around the
world (Table 1).

Application Aims

Of the included studies, 9.57% (n = 20) [14-33] compared various
ML models/approaches, 35.9% (n = 75) [34-51], [52-71],
[72-91], [92-108] modelled population-level disease incidence
as the outcome, 4.78% (n = 11) [109-119] modelled population-
level disease risk, 7.18% (n = 15) [120-134] focused on disease
surveillance, specifically identifying cases, 1.91% (n = 4)
[135-138] evaluated the effectiveness of a public health
intervention on disease incidence, and 40.2% (n = 84)
[139-151], [152-171], [172-190], [191-205], [206-221] of
studies were identified as having multiple application aims.

Data Sources

Most studies sourced data from biomedical databases including
aggregates of research-based data, such as clinical trials or
populations health studies (n = 160, 76.6%) [14-20], [24, 25,
27], [30-32], [34-52], [55-60], [62-68], [70-82], [84-89], [91, 92,
95], [98-106], [110-117], [119], [123-125], [128, 130], [135-138],
[140-148], [150, 151, 153, 154, 157, 158, 160, 161, 163],
[165-168], [172, 173], [175-177], [179-196], [198, 200-207],
[209, 211-215], [217-219, 221], followed by longitudinal
databases (n = 24, 11.48%) [23, 28, 29, 33, 53, 61, 83, 93, 108,
118, 129, 139, 162], textual elements drawn from social media
(n = 10, 4.78%) [120-122, 126, 127, 131, 134, 149, 174, 197],
electronic medical records (n = 2, 0.96%), and other data sources
(i.e., Google Search Trends, Meteorological and Environmental
data) (n = 2, 0.96%) [199, 220]. A combination of data sources
was utilized in 11 (5.26%) [54, 69, 94, 96, 97, 132, 133, 164, 208,
210, 216] of the included studies.

Communicable Diseases
A majority of studies (n = 177, 84.7%) [14-16], [18-27], [30-32],
[35-45], [49-57, 59], [62-74], [76-107], [109-117], [119, 121,
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124, 125], [127-131], [133, 134], [136-156], [158-166], [168,
169], [171-178], [182-188], [191-192], [194-197], [200-218,
221] focused on SARS-CoV-2. The most commonly studied
communicable diseases after SARS-CoV-2 were malaria (n =
9,4.31%) [17, 48, 58, 60, 61, 75, 171, 219, 220], HIV (n = 8, 3.83%)
(28, 29, 120, 122, 123, 135, 190, 193], tuberculosis (n = 5, 2.39%)
(33, 34, 132, 189, 199], diarrheal diseases (n = 4, 1.91%) [46, 47,
179, 180], hepatitis (n = 3, 1.44%) [118, 157, 198], and measles
(n =1, 0.48%) [167]. Multiple communicable diseases were the
focus of two (0.96%) [126, 181] studies included in the sample.

Technical Approaches

A variety of specialized algorithms/models were employed across
studies, such as ARIMA (AutoRegressive Integrated Moving
Average) and ANFIS (Adaptive Neuro Fuzzy Interference
System) (n = 127, 60.8%) [2-6], [15, 17, 21, 23, 25, 26, 28,
29], [31-38], [40, 42, 44, 45], [48-53], [57-59], [62, 63, 65, 67,
69, 71, 72, 741, [76-80], [82, 84], [86-90], [92, 94, 95, 97],
[100-103], [106-114], [117, 118, 121], [124-126], [128, 130,
133, 134, 139, 141, 142, 149, 151, 153, 154], [159-161], [163,
165], [169-171], [173-179], [181-183], [185-188], [190,
191-197], [200, 201, 208]. Mixed technical approaches (e.g.,
combination of natural language processing, and neural
networks) were employed in approximately 1 of 3 studies (n =
61,29.2%) [20-24], [26, 30-32], [36, 39, 42, 49, 53, 56, 59, 66], [73,
76, 80, 82, 93, 97], [110, 128, 131, 132, 134, 135, 141], [143, 144,
147, 150], [152, 155-160, 162], [167-170, 174, 179], [180, 184,
191, 195, 200, 202, 210, 211], [214-218]. Supervised learning
algorithms were employed in 12 studies (n = 5.74%) [51, 58, 68,
72,87,95,103, 111, 116, 127, 148, 219], and deep learning neural
networks were employed in 9 studies (4.31%) [24, 67, 78, 85, 105,
117, 149, 164, 176].

Consideration of Bias and Its Mitigation

A total of 18 studies (8.61%) [68, 71, 94, 95, 101], [105-107], [117,
126, 133, 152, 153, 159, 178, 186, 193, 194] of 209 explicitly
considered bias. Of the 18, five studies [80, 107, 197, 205, 206]
considered demographic bias stemming from age, sex, or
ethnicity which reflected a lack of representation of certain
groups or the exclusion of data on specific populations. Four
studies [83, 119, 171, 190] considered bias stemming from
socioeconomic status which arose from limited data or
underrepresentation of lower socioeconomic groups. Two
studies [117, 118] did not specify the specific type of bias, and
seven studies [106, 113, 129, 138, 145, 164, 165] indicated
considering bias stemming from other sources, such as
measurement and statistical biases. In addition, of the studies
that did consider bias, 11 studies [94, 95, 105-107, 126, 133, 152,
159, 194] implemented a bias mitigation strategy to address
these concerns.

DISCUSSION

This scoping review identified 209 studies that applied ML
models in population and public health to address
communicable diseases. Most studies focused on SARS-CoV-2,

ML for Communicable Disease Control

with modelling disease incidence being the most common
application.

The COVID-19 pandemic drove a rapid growth in ML
research aimed at predicting case trends and guiding public
health interventions. Studies applied a range of models, from
traditional regression to deep learning, to predict case trends and
inform interventions. For example, Devaraj et al. used deep
learning to forecast SARS-CoV-2 cases, highlighting the
model’s ability to learn temporal dependencies and trends
[211]. Castillo-Olea et al. compared logistic regression and
neural networks to identify early-stage SARS-CoV-2 cases in a
hospital setting [109]. Both ML models were successful in
evaluating differing variables, effectively identifying early-stage
cases of SARS-CoV-2 [109]. Nguyen et al. examined BeCaked, a
novel model combining the Susceptible-Infectious-Recovered-
Deceased (SIR-D) compartmental model and the Variational
Autoencoder (VAE) neural network, to forecast SARS-CoV-
2 cases [153]. BeCaked aimed to overcome the limitations of
the individual ML models to ensure effectiveness and provide
reliable predictions of SARS-CoV-2 cases [153]. Overall, our
analysis found that studies frequently relied on specialized or
hybrid models to address the shortcomings of standalone
approaches.

Specialized and ensemble approaches were frequently used
to improve predictive performance and overcome model
limitations. Ahmad et al. explored optimal models to
predict SARS-CoV-2 cases, by comparing ML and DL
models such as linear regression, support vector regression,
and long short-term memory (LSTM) [14]. Lucas et al.
approached SARS-CoV-2 forecasting by using a modified
LSTM  system, COVID-LSTM, which integrates
spatiotemporal features into an LSTM model [171].
Likewise, Arik et al. extended the Susceptible-Exposed-
Infectious-Removed (SEIR) model by proposing an Al-

augmented epidemiology framework for SARS-CoV-
2 forecasting [207] These efforts underscore the
importance of accurate forecasting tools to inform

outbreak response and public health planning.

Forecasting remains a critical application of ML, particularly
in pandemic response. Many studies turned to novel approaches
to explore the prediction accuracy of models. Ghazaly et al.
examined prediction accuracy for SARS-CoV-2 cases using a
Non-linear Auto-Regressive Network (NAR) network [44]. This
method is similar to ANN, except that it depends on past
information for future forecasting. Accurate predictions of
SARS-CoV-2 spread are critical for health systems globally as
they facilitate preventative measures and timely interventions,
helping to manage risks and demands [222]. The COVID-19
pandemic has put immense pressure on healthcare systems
worldwide, highlighting the need for reliable and accurate
forecasting models [223].

Studies also addressed malaria, HIV, tuberculosis, and
diarrheal diseases. These models often incorporated
meteorological or demographic data to improve predictive
accuracy. Abdukar et al. [46] used ANN to forecast the
incidence of diarrheal diseases in Nigeria, while Fang et al.
[179] applied an RF model to predict infectious diarrhea in
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China. Brown et al. developed a predictive ML system using
generalized linear models (GLM), ensemble methods, and SVM
for malaria estimation [61]. Similarly, Mfisimana et al. used GLM
and ANN to predict malaria cases. Given the complexity of
malaria and its interventions, multivariate models are
preferred, as no single intervention can fully eliminate the
disease [75]. Non-linear models were frequently applied to
HIV and tuberculosis to account for complex and dynamic
transmission patterns [29, 132, 135]. These included
backpropagation neural networks, convolutional neural
networks, and ARIMA models.

A central objective of this review was to assess how studies
addressed bias. Some models incorporated strategies to mitigate
algorithmic bias. A study by Almazroi & Usmani used Tree-based
ensemble methods in their model design, such as RFs or
XGBoost, to reduce bias caused by combining various
predictor models into a single model [184]. Maria-Gomez
addressed bias in model implementation by adjusting models
for age or sex [107]. Price et al identified bias in model training,
noting that rural areas and infection incidence were not
accurately represented in training datasets [164].

Applying ML models in public and population health to
detect or characterize communicable diseases requires
careful attention to data quality. The performance and
reliability of these models depend on the consistency,
completeness, and accuracy of the data used for training.
Many studies reported challenges such as missing,
inconsistent, inaccurate, or duplicate data, which can
significantly reduce the predictive accuracy and
generalizability of ML models [223].

Interpretability was another underexamined area. While ML
models can support public health decision-making, opaque
algorithms may limit their utility in practice. Transparent
models and explainable outputs are essential to ensure
accountability, particularly when predictions affect resource
allocation, outbreak response, or population health
planning [224].

This review has several strengths. First, it involves a
comprehensive search across multiple databases, the use of
clearly defined inclusion and exclusion criteria and the
double-review screening process. This review also has
limitations. Despite a broad search strategy designed to
capture all subtypes of ML applications in public and
population health to address communicable diseases, some
relevant articles may have been inadvertently excluded due to
our global scope and the inherent limitations of indexing.
Additionally, grey literature was excluded from the search.

CONCLUSION

This scoping review highlights the potential of ML
applications in public and population health for predicting
and characterizing communicable diseases. Although this
study examined a broad spectrum of studies on the
development, implementation, and comparison of these
models, it’s clear that using ML for communicable diseases

ML for Communicable Disease Control

in public health is still an evolving field, with ongoing
challenges remaining. There is a need for more
representative datasets for training models and more
rigorous validation to ensure reliable, accurate, and
acceptable tools. Future research should focus further on
identifying and addressing biases that can emerge during the
design, training, and implementation of ML models used in
public and population health.
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