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Objectives: Communicable diseases continue to threaten global health, with COVID-19 
as a recent example. Rapid data analysis using machine learning (ML) is crucial for 
detecting and controlling outbreaks. We aimed to identify how ML approaches have been 
applied to achieve public health objectives in communicable disease control and to explore 
algorithmic biases in model design, training, and implementation, and strategies to mitigate 
these biases.
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Methods: We searched MEDLINE, Embase, Cochrane Central, Scopus, ACM DL, 
INSPEC, and Web of Science to identify peer-reviewed studies from 1 January 2000, 
to 15 July 2022. Included studies applied ML models in population and public health to 
address ten communicable diseases with high prevalence.

Results: 28,378 citations were retrieved, and 209 met our inclusion criteria. ML for 
communicable diseases has risen since 2020, particularly for SARS-CoV-2 (n = 177), 
followed by malaria, HIV, and tuberculosis. Eighteen studies (8.61%) considered bias, and 
only eleven implemented mitigation strategies.

Conclusion: A growing number of studies used ML for disease surveillance. Addressing 
biases in model design should be prioritized in future research to improve reliability and 
equity in public health outcomes.

Keywords: public health, communicable diseases, machine learning, artificial intelligence, population health, 
scoping review

INTRODUCTION

Communicable diseases, caused by pathogenic microorganisms 
such as viruses, bacteria, parasites, or fungi, remain a significant 
global public health threat [1]. Despite advances in medicine and 
sanitation, communicable diseases account for a substantial share 
of the global disease burden [2]. According to the World Health 
Organization (WHO), communicable diseases, including lower 
respiratory infections, diarrheal diseases, and tuberculosis were 
responsible for 8 of the top 10 causes of death in low-income 
countries in 2021 [3]. The COVID-19 pandemic further 
underscored the health, economic, and social impacts of 
emerging pathogens.

Machine learning (ML) has the potential to transform 
communicable disease management by enabling early 
detection and prediction of outbreaks and pandemics [4, 5]. In 
healthcare, ML is increasingly used to process and identify 
patterns in large amounts of data from electronic health 
records and wearable devices [4]. In public health, ML 
algorithms can analyze complex interactions in data from 
multiple sources to support more accurate predictions of 
emerging health threats, to define the scale of an outbreak, 
and to rapidly evaluate communicable disease control 
interventions [6, 7]. These models have seen wide application 
during the COVID-19 pandemic, where they were used to 
forecast trends, support clinical decisions, and guide resource 
allocation [6, 8]. [6, 8, 9] However, the extent of use of ML in 
population and public health remains unclear, highlighting the 
need for a comprehensive review of recent approaches in 
this field.

The objective of this study was to conduct a scoping review to 
identify studies that use ML to address population and public 
health challenges related to communicable diseases. Themes 
explored included whether and how teams considered bias 
during the design, training, and implementation of ML 
models. Given the well-documented risks of bias in the 
development and implementation of ML models for public 

health, we prioritized this aspect to underscore the importance 
of fairness and equity in model outcomes.

METHODS

This scoping review followed the Arksey and O’Malley guidelines 
for scoping reviews [10, 11] and the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses Extension for Scoping 
Reviews (PRISMA-ScR) guidelines [12]. Our protocol was 
published by the Open Science Framework (https://osf.io/ 
xydut/).

Search Strategy
An experienced information specialist (CZ) helped develop 
and conduct a comprehensive search of the peer-reviewed, 
indexed literature. The following databases were searched 
from 1 January 2000, to 15 July 2022: Medline (Ovid), 
Embase (Ovid), Cochrane Central Register of Controlled 
Trials and Cochrane Database of Systematic Reviews 
(Ovid), Scopus, ACM Digital Library, INSPEC, and Web of 
Science’s Science Citation Index, Social Sciences Citation 
Index, and Emerging Sources Citation Index. The 
publication date ranged from 2000 to 2022 was selected to 
capture ML models that leverage modern computing 
techniques and recent data advancements. The search used 
a combination of subject headings and keywords, adapted for 
each database, for the broad concepts of artificial intelligence 
combined with the following communicable diseases: lower 
respiratory infections, diarrheal diseases, tuberculosis, HIV, 
malaria, meningitis, measles, pertussis (whooping cough), 
hepatitis, SARS-CoV-2. All languages were included in the 
search (Supplementary Material S2). We limited our search 
to these 10 specific communicable diseases based on their high 
global prevalence and public health impact [3]. These diseases 
were selected to provide a focused analysis while ensuring 
relevance to current population health priorities.
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Eligibility Criteria
To be eligible, studies had to meet the following criteria 
during both title/abstract and full-text screening: (1) focus on 
population-level implications or adopt a public health 
approach; (2) address at least one of the following 
conditions: lower respiratory infections, diarrheal diseases, 
tuberculosis, HIV, malaria, meningitis, measles, pertussis 
(whooping cough), hepatitis, or SARS-CoV-2; (3) utilize at 
least one ML model to tackle a real-world population or 
public health challenge. There were no language restrictions, 
and all study designs, except for review articles, were 
considered.

Studies were excluded if: (1) they did not have population- 
wide implications or a public health approach; (2) they did 
not focus on any of the conditions listed in the inclusion 
criteria or focused only on complications and related 
conditions; (3) no real-world data was used; or (4) they 
were commentaries, letters, editorials, conference 
proceedings, or dissertations.

Study Selection and Data 
Collection Process
Citations from all databases were imported into DistillerSR [13] 
for the initial title and abstract review. Each citation was reviewed 
independently by two reviewers (RR, TV, AP, EM, NS) using the 
eligibility criteria to determine inclusion or exclusion for full-text 
review. Any conflicts during this process were solved through 
discussion with a third author (SB). Full articles were retrieved for 
further eligibility screening, and studies that met the eligibility 
criteria were included. The final set of studies included in this 
scoping review includes only those that passed the full-text 
screening process. Five members of the study team assisted 
with data extraction (RR, TV, AP, EM, NS).

The following data were extracted: author(s), title, journal, 
publication year, ML application type(s), the intended purpose of 
ML, study design, intervention (if applicable), results, 
jurisdiction, data sources, unit(s) of analysis, sample size, 
demographics, identification of any potential algorithmic bias 
in the ML model (biases related to gender, sex, ethnicity, 

FIGURE 1 | Selection process of eligible studies from all identified citations (Toronto, Canada, 2026).
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socioeconomic status), transferability to low- and middle-income 
countries, bias mitigation strategies, CDs targeted, target 
population and setting, intended users, and impact reported 
by the author. We also noted if information was unavailable 
from an article or if any additional sources of algorithmic bias 
(e.g., age-related bias) were discussed.

Data Synthesis
We used a narrative synthesis to review and summarize the 
objectives, ML algorithms, and relevance of each study. We 
focused on how these studies used ML to characterize and 
detect communicable disease cases and outbreaks, detailing the 
application and implications of using ML algorithms on specific 
communicable diseases. We organized the studies by the 

communicable disease explored and identified common 
limitations found in the studies, such as small data sets and 
generalizability issues.

RESULTS

Study Selection and Characteristics
Our initial search identified 47,310 citations. After removing 
18,932 duplicates, 28,378 citations were double-screened. 
Following title and abstract screening, 603 studies were 
included for full-text review. Following full-text screening, 
394 of these studies were excluded, leaving 209 studies that 
met our criteria for this review (Figure 1).

The number of studies using ML in communicable disease 
control at the population level or for public health purposes has 
increased over time. The first study was published in 2005, and 
only 10 (4.8%) studies were published between 2000–2015, and 
most studies (n = 199, 95.2%) were published between 2020 and 
2023. A large number of studies were conducted by teams in the 
USA (n = 31, 14.8%), India (n = 18, 8.6%) or China (n = 15, 7.2%), 
but ML approaches are now common around the 
world (Table 1).

Application Aims
Of the included studies, 9.57% (n = 20) [14–33] compared various 
ML models/approaches, 35.9% (n = 75) [34–51], [52–71], 
[72–91], [92–108] modelled population-level disease incidence 
as the outcome, 4.78% (n = 11) [109–119] modelled population- 
level disease risk, 7.18% (n = 15) [120–134] focused on disease 
surveillance, specifically identifying cases, 1.91% (n = 4) 
[135–138] evaluated the effectiveness of a public health 
intervention on disease incidence, and 40.2% (n = 84) 
[139–151], [152–171], [172–190], [191–205], [206–221] of 
studies were identified as having multiple application aims.

Data Sources
Most studies sourced data from biomedical databases including 
aggregates of research-based data, such as clinical trials or 
populations health studies (n = 160, 76.6%) [14–20], [24, 25, 
27], [30–32], [34–52], [55–60], [62–68], [70–82], [84–89], [91, 92, 
95], [98–106], [110–117], [119], [123–125], [128, 130], [135–138], 
[140–148], [150, 151, 153, 154, 157, 158, 160, 161, 163], 
[165–168], [172, 173], [175–177], [179–196], [198, 200–207], 
[209, 211–215], [217–219, 221], followed by longitudinal 
databases (n = 24, 11.48%) [23, 28, 29, 33, 53, 61, 83, 93, 108, 
118, 129, 139, 162], textual elements drawn from social media 
(n = 10, 4.78%) [120–122, 126, 127, 131, 134, 149, 174, 197], 
electronic medical records (n = 2, 0.96%), and other data sources 
(i.e., Google Search Trends, Meteorological and Environmental 
data) (n = 2, 0.96%) [199, 220]. A combination of data sources 
was utilized in 11 (5.26%) [54, 69, 94, 96, 97, 132, 133, 164, 208, 
210, 216] of the included studies.

Communicable Diseases
A majority of studies (n = 177, 84.7%) [14–16], [18–27], [30–32], 
[35–45], [49–57, 59], [62–74], [76–107], [109–117], [119, 121, 

TABLE 1 | Distribution of studies by country where research on machine learning in 
population or public health occurred (Toronto, Canada, 2026).

Country Frequency Percentage (%)

Algeria 1 0.48
Bangladesh 5 2.39
Brazil 1 0.48
Burkina Faso 1 0.48
Burundi 1 0.48
Canada 3 1.44
China 15 7.18
Colombia 1 0.48
Egypt 1 0.48
Eswatini 1 0.48
France 1 0.48
Germany 3 1.44
India 18 8.61
Indonesia 3 1.44
Iran 8 3.83
Iraq 3 1.44
Israel 1 0.48
Italy 2 0.96
Japan 1 0.48
Jordon 1 0.48
Kuwait 1 0.48
Malaysia 1 0.48
Mexico 5 2.39
Nigeria 2 0.96
Pakistan 4 1.91
Peru 1 0.48
Philippines 1 0.48
Portugal 1 0.48
Qatar 1 0.48
Romania 1 0.48
Saudi Arabia 8 3.83
Serbia 1 0.48
Somalia 1 0.48
South Africa 2 0.96
South Korea 3 1.44
Spain 3 1.44
Taiwan 1 0.48
Tanzania 1 0.48
Thailand 1 0.48
Turkey 3 1.44
U.S.A. 31 14.83
U.K. 2 0.96
Ukraine 1 0.48
Zambia 1 0.48
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124, 125], [127–131], [133, 134], [136–156], [158–166], [168, 
169], [171–178], [182–188], [191–192], [194–197], [200–218, 
221] focused on SARS-CoV-2. The most commonly studied 
communicable diseases after SARS-CoV-2 were malaria (n = 
9, 4.31%) [17, 48, 58, 60, 61, 75, 171, 219, 220], HIV (n = 8, 3.83%) 
[28, 29, 120, 122, 123, 135, 190, 193], tuberculosis (n = 5, 2.39%) 
[33, 34, 132, 189, 199], diarrheal diseases (n = 4, 1.91%) [46, 47, 
179, 180], hepatitis (n = 3, 1.44%) [118, 157, 198], and measles 
(n = 1, 0.48%) [167]. Multiple communicable diseases were the 
focus of two (0.96%) [126, 181] studies included in the sample.

Technical Approaches
A variety of specialized algorithms/models were employed across 
studies, such as ARIMA (AutoRegressive Integrated Moving 
Average) and ANFIS (Adaptive Neuro Fuzzy Interference 
System) (n = 127, 60.8%) [2–6], [15, 17, 21, 23, 25, 26, 28, 
29], [31–38], [40, 42, 44, 45], [48–53], [57–59], [62, 63, 65, 67, 
69, 71, 72, 74], [76–80], [82, 84], [86–90], [92, 94, 95, 97], 
[100–103], [106–114], [117, 118, 121], [124–126], [128, 130, 
133, 134, 139, 141, 142, 149, 151, 153, 154], [159–161], [163, 
165], [169–171], [173–179], [181–183], [185–188], [190, 
191–197], [200, 201, 208]. Mixed technical approaches (e.g., 
combination of natural language processing, and neural 
networks) were employed in approximately 1 of 3 studies (n = 
61, 29.2%) [20–24], [26, 30–32], [36, 39, 42, 49, 53, 56, 59, 66], [73, 
76, 80, 82, 93, 97], [110, 128, 131, 132, 134, 135, 141], [143, 144, 
147, 150], [152, 155–160, 162], [167–170, 174, 179], [180, 184, 
191, 195, 200, 202, 210, 211], [214–218]. Supervised learning 
algorithms were employed in 12 studies (n = 5.74%) [51, 58, 68, 
72, 87, 95, 103, 111, 116, 127, 148, 219], and deep learning neural 
networks were employed in 9 studies (4.31%) [24, 67, 78, 85, 105, 
117, 149, 164, 176].

Consideration of Bias and Its Mitigation
A total of 18 studies (8.61%) [68, 71, 94, 95, 101], [105–107], [117, 
126, 133, 152, 153, 159, 178, 186, 193, 194] of 209 explicitly 
considered bias. Of the 18, five studies [80, 107, 197, 205, 206] 
considered demographic bias stemming from age, sex, or 
ethnicity which reflected a lack of representation of certain 
groups or the exclusion of data on specific populations. Four 
studies [83, 119, 171, 190] considered bias stemming from 
socioeconomic status which arose from limited data or 
underrepresentation of lower socioeconomic groups. Two 
studies [117, 118] did not specify the specific type of bias, and 
seven studies [106, 113, 129, 138, 145, 164, 165] indicated 
considering bias stemming from other sources, such as 
measurement and statistical biases. In addition, of the studies 
that did consider bias, 11 studies [94, 95, 105–107, 126, 133, 152, 
159, 194] implemented a bias mitigation strategy to address 
these concerns.

DISCUSSION

This scoping review identified 209 studies that applied ML 
models in population and public health to address 
communicable diseases. Most studies focused on SARS-CoV-2, 

with modelling disease incidence being the most common 
application.

The COVID-19 pandemic drove a rapid growth in ML 
research aimed at predicting case trends and guiding public 
health interventions. Studies applied a range of models, from 
traditional regression to deep learning, to predict case trends and 
inform interventions. For example, Devaraj et al. used deep 
learning to forecast SARS-CoV-2 cases, highlighting the 
model’s ability to learn temporal dependencies and trends 
[211]. Castillo-Olea et al. compared logistic regression and 
neural networks to identify early-stage SARS-CoV-2 cases in a 
hospital setting [109]. Both ML models were successful in 
evaluating differing variables, effectively identifying early-stage 
cases of SARS-CoV-2 [109]. Nguyen et al. examined BeCaked, a 
novel model combining the Susceptible-Infectious-Recovered- 
Deceased (SIR-D) compartmental model and the Variational 
Autoencoder (VAE) neural network, to forecast SARS-CoV- 
2 cases [153]. BeCaked aimed to overcome the limitations of 
the individual ML models to ensure effectiveness and provide 
reliable predictions of SARS-CoV-2 cases [153]. Overall, our 
analysis found that studies frequently relied on specialized or 
hybrid models to address the shortcomings of standalone 
approaches.

Specialized and ensemble approaches were frequently used 
to improve predictive performance and overcome model 
limitations. Ahmad et al. explored optimal models to 
predict SARS-CoV-2 cases, by comparing ML and DL 
models such as linear regression, support vector regression, 
and long short-term memory (LSTM) [14]. Lucas et al. 
approached SARS-CoV-2 forecasting by using a modified 
LSTM system, COVID-LSTM, which integrates 
spatiotemporal features into an LSTM model [171]. 
Likewise, Arik et al. extended the Susceptible-Exposed- 
Infectious-Removed (SEIR) model by proposing an AI- 
augmented epidemiology framework for SARS-CoV- 
2 forecasting [207] These efforts underscore the 
importance of accurate forecasting tools to inform 
outbreak response and public health planning.

Forecasting remains a critical application of ML, particularly 
in pandemic response. Many studies turned to novel approaches 
to explore the prediction accuracy of models. Ghazaly et al. 
examined prediction accuracy for SARS-CoV-2 cases using a 
Non-linear Auto-Regressive Network (NAR) network [44]. This 
method is similar to ANN, except that it depends on past 
information for future forecasting. Accurate predictions of 
SARS-CoV-2 spread are critical for health systems globally as 
they facilitate preventative measures and timely interventions, 
helping to manage risks and demands [222]. The COVID-19 
pandemic has put immense pressure on healthcare systems 
worldwide, highlighting the need for reliable and accurate 
forecasting models [223].

Studies also addressed malaria, HIV, tuberculosis, and 
diarrheal diseases. These models often incorporated 
meteorological or demographic data to improve predictive 
accuracy. Abdukar et al. [46] used ANN to forecast the 
incidence of diarrheal diseases in Nigeria, while Fang et al. 
[179] applied an RF model to predict infectious diarrhea in 
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China. Brown et al. developed a predictive ML system using 
generalized linear models (GLM), ensemble methods, and SVM 
for malaria estimation [61]. Similarly, Mfisimana et al. used GLM 
and ANN to predict malaria cases. Given the complexity of 
malaria and its interventions, multivariate models are 
preferred, as no single intervention can fully eliminate the 
disease [75]. Non-linear models were frequently applied to 
HIV and tuberculosis to account for complex and dynamic 
transmission patterns [29, 132, 135]. These included 
backpropagation neural networks, convolutional neural 
networks, and ARIMA models.

A central objective of this review was to assess how studies 
addressed bias. Some models incorporated strategies to mitigate 
algorithmic bias. A study by Almazroi & Usmani used Tree-based 
ensemble methods in their model design, such as RFs or 
XGBoost, to reduce bias caused by combining various 
predictor models into a single model [184]. Maria-Gomez 
addressed bias in model implementation by adjusting models 
for age or sex [107]. Price et al identified bias in model training, 
noting that rural areas and infection incidence were not 
accurately represented in training datasets [164].

Applying ML models in public and population health to 
detect or characterize communicable diseases requires 
careful attention to data quality. The performance and 
reliability of these models depend on the consistency, 
completeness, and accuracy of the data used for training. 
Many studies reported challenges such as missing, 
inconsistent, inaccurate, or duplicate data, which can 
significantly reduce the predictive accuracy and 
generalizability of ML models [223].

Interpretability was another underexamined area. While ML 
models can support public health decision-making, opaque 
algorithms may limit their utility in practice. Transparent 
models and explainable outputs are essential to ensure 
accountability, particularly when predictions affect resource 
allocation, outbreak response, or population health 
planning [224].

This review has several strengths. First, it involves a 
comprehensive search across multiple databases, the use of 
clearly defined inclusion and exclusion criteria and the 
double-review screening process. This review also has 
limitations. Despite a broad search strategy designed to 
capture all subtypes of ML applications in public and 
population health to address communicable diseases, some 
relevant articles may have been inadvertently excluded due to 
our global scope and the inherent limitations of indexing. 
Additionally, grey literature was excluded from the search.

CONCLUSION

This scoping review highlights the potential of ML 
applications in public and population health for predicting 
and characterizing communicable diseases. Although this 
study examined a broad spectrum of studies on the 
development, implementation, and comparison of these 
models, it’s clear that using ML for communicable diseases 

in public health is still an evolving field, with ongoing 
challenges remaining. There is a need for more 
representative datasets for training models and more 
rigorous validation to ensure reliable, accurate, and 
acceptable tools. Future research should focus further on 
identifying and addressing biases that can emerge during the 
design, training, and implementation of ML models used in 
public and population health.

AUTHOR CONTRIBUTIONS

ADP conceived the study. SB, AP, RR, NS, TV, MS, EM, and FK 
conducted the scoping review and helped to draft the manuscript. 
CZ developed and executed the search strategy. All authors 
contributed to the article and approved the submitted version.

FUNDING

The author(s) declared that financial support was received for this 
work and/or its publication. This project was supported in part by 
the Canadian Institutes of Health Research (CIHR). ADP is 
supported as a Clinician-Scientist by the Department of 
Family and Community Medicine, Faculty of Medicine at the 
University of Toronto and at St. Michael’s Hospital, the Li Ka 
Shing Knowledge Institute, St. Michael’s Hospital, and a CIHR 
Applied Public Health Chair in Upstream Prevention.

AUTHOR DISCLAIMER

The opinions, results and conclusions reported in this article are 
those of the authors and are independent of any funding sources.

CONFLICT OF INTEREST

The authors declare that they do not have any conflicts of interest.

GENERATIVE AI STATEMENT

The author(s) declared that generative AI was not used in the 
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this 
article has been generated by Frontiers with the support of 
artificial intelligence and reasonable efforts have been made to 
ensure accuracy, including review by the authors wherever 
possible. If you identify any issues, please contact us.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: 
https://www.ssph-journal.org/articles/10.3389/phrs.2026. 
1608074/full#supplementary-material

Public Health Reviews | Owned by SSPH+ | Published by Frontiers February 2026 | Volume 47 | Article 1608074 6

Birdi et al. ML for Communicable Disease Control

https://www.ssph-journal.org/articles/10.3389/phrs.2026.1608074/full#supplementary-material
https://www.ssph-journal.org/articles/10.3389/phrs.2026.1608074/full#supplementary-material


REFERENCES

1. WHO EMRO. Infectious Diseases. Health Topics. Available online at: https://www. 
emro.who.int/health-topics/infectious-diseases/index.html (Accessed June 18, 2025).

2. Naghavi M, Mestrovic T, Gray A, Gershberg Hayoon A, Swetschinski 
LR, Robles Aguilar G, et al. Global Burden Associated with 85 Pathogens 
in 2019: A Systematic Analysis for the Global Burden of Disease Study 
2019. Lancet Infect Dis (2024) 24(8):868–95. doi:10.1016/S1473- 
3099(24)00158-0

3. The top 10 causes of death. The Top 10 Causes of Death. Available online at: 
https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of- 
death (Accessed June 18, 2025).

4. Okeibunor JC, Jaca A, Iwu-Jaja CJ, Idemili-Aronu N, Ba H, Zantsi ZP, et al. 
The Use of Artificial Intelligence for Delivery of Essential Health Services 
Across WHO Regions: A Scoping Review. Front Public Health (2023) 11: 
1102185. doi:10.3389/fpubh.2023.1102185

5. Tran NK, Albahra S, May L, Waldman S, Crabtree S, Bainbridge S, et al. 
Evolving Applications of Artificial Intelligence and Machine Learning in 
Infectious Diseases Testing. Clin Chem (2021) 68(1):125–33. doi:10.1093/ 
clinchem/hvab239

6. Chiu HYR, Hwang CK, Chen SY, Shih FY, Han HC, King CC, et al. Machine 
Learning for Emerging Infectious Disease Field Responses. Sci Rep (2022) 
12(1):328. doi:10.1038/s41598-021-03687-w

7. Bratko I. Machine Learning: Between Accuracy and Interpretability. In: 
Learning, Networks and Statistics. Vienna: Springer Vienna (1997). p. 163–77.

8. Wang M, Wei Z, Jia M, Chen L, Ji H. Deep Learning Model for Multi- 
Classification of Infectious Diseases from Unstructured Electronic Medical 
Records. BMC Med Inform Decis Mak (2022) 22(1):41. doi:10.1186/s12911- 
022-01776-y

9. Santangelo OE, Gentile V, Pizzo S, Giordano D, Cedrone F. Machine 
Learning and Prediction of Infectious Diseases: A Systematic Review. 
Mach Learn Knowl Extr (2023) 5(1):175–98. doi:10.3390/make5010013

10. Arksey H, O’Malley L. Scoping Studies: Towards A Methodological 
Framework. Int J Social Res Methodol Theor Pract (2005) 8(1):19–32. 
doi:10.1080/1364557032000119616

11. Daudt HML, Van Mossel C, Scott SJ. Enhancing the Scoping Study 
Methodology: A Large, Inter-Professional Team’s Experience with Arksey 
and O’malley’s Framework. BMC Med Res Methodol (2013) 13(1):1–9. doi:10. 
1186/1471-2288-13-48

12. Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. 
PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and 
Explanation. Ann Intern Med (2018) 169(7):467–73. doi:10.7326/M18-0850

13. DistillerSR. DistillerSR. Version 2.35. DistillerSR Inc. (2023). Available online 
at: https://www.distillersr.com/ (Accessed June, 2023).

14. Ahmad HF, Khaloofi H, Azhar Z, Algosaibi A, Hussain J. An Improved 
COVID-19 Forecasting by Infectious Disease Modelling Using Machine 
Learning. Appl Sci (Switzerland) (2021) 11(23):11426. doi:10.3390/ 
app112311426

15. Jung SY, Jo H, Son H, Hwang HJ. Real-World Implications of a Rapidly 
Responsive COVID-19 Spread Model with Time-Dependent Parameters via 
Deep Learning: Model Development and Validation. J Med Internet Res 
(2020) 22(9):e19907. doi:10.2196/19907

16. Melin P, Monica JC, Sanchez D, Castillo O. Multiple Ensemble Neural 
Network Models with Fuzzy Response Aggregation for Predicting 
COVID-19 Time Series: The Case of Mexico. Healthcare (Switzerland) 
(2020) 8(2):181. doi:10.3390/healthcare8020181

17. Mohamed J, Mohamed AI, Daud EI. Evaluation of Prediction Models for the 
Malaria Incidence in Marodijeh Region, Somaliland. J Parasitic Dis (2022) 
46(2):395–408. doi:10.1007/s12639-021-01458-y

18. Mohammadi A, Meniailov I, Bazilevych K, Yakovlev S, Chumachenko D. 
Comparative Study of Linear Regression and Sir Models of COVID-19 
Propagation in Ukraine Before Vaccination. Radioelectronic Computer Syst 
(2021)(3) 5–18. doi:10.32620/reks.2021.3.01

19. Mohan S, John A, Abugabah A, Adimoolam M, Kumar Singh S, kashif Bashir 
A, et al. An Approach to Forecast Impact of COVID-19 Using Supervised 
Machine Learning Model. Softw Pract Exp (2022) 52(4):824–40. doi:10.1002/ 
spe.2969

20. Mohimont L, Chemchem A, Alin F, Krajecki M, Steffenel LA. Convolutional 
Neural Networks and Temporal CNNs for COVID-19 Forecasting in France. 
Appl Intelligence (Dordrecht, Netherlands) (2021) 51(12):8784–809. doi:10. 
1007/s10489-021-02359-6

21. Omran NF, Abd-El Ghany SF, Saleh H, Ali AA, Gumaei A, Al-Rakhami 
M. Applying Deep Learning Methods on Time-Series Data for 
Forecasting COVID-19 in Egypt, Kuwait, and Saudi Arabia. 
Complexity (2021) 2021. doi:10.1155/2021/6686745

22. Ben YN, Dhiaeddine Kandara M, Bellamine BenSaoud N. Integrating Models 
and Fusing Data in a Deep Ensemble Learning Method for Predicting 
Epidemic Diseases Outbreak. Big Data Res (2022) 27. doi:10.1016/j.bdr. 
2021.100286

23. Ayoobi N, Sharifrazi D, Alizadehsani R, Shoeibi A, Gorriz JM, Moosaei H, 
et al. Time Series Forecasting of New Cases and New Deaths Rate for COVID- 
19 Using Deep Learning Methods. Results Phys (2021) 27:104495. doi:10. 
1016/j.rinp.2021.104495

24. Shastri S, Singh K, Kumar S, Kour P, Mansotra V. Deep-LSTM Ensemble 
Framework to Forecast COVID-19: An Insight to the Global Pandemic. Int 
J Inf Technology (Singapore) (2021) 13(4):1291–301. doi:10.1007/s41870-020- 
00571-0

25. Shastri S, Singh K, Deswal M, Sachin K, Mansotra V. CoBiD-Net: A Tailored 
Deep Learning Ensemble Model for Time Series Forecasting of covid-19. Spat 
Inf Res (2021) 30:9–22. doi:10.1007/s41324-021-00408-3

26. Shastri S, Singh K, Kumar S, Kour P, Mansotra V. Time Series Forecasting of 
COVID-19 Using Deep Learning Models: India-Usa Comparative Case 
Study. Chaos Solitons Fractals (2020) 140. doi:10.1016/j.chaos.2020.110227

27. Shetty RP, Pai PS. Forecasting of COVID 19 Cases in Karnataka State Using 
Artificial Neural Network (ANN). J The Inst Eng (India) Ser B (2021) 102(6): 
1201–11. doi:10.1007/s40031-021-00623-4

28. Li X, Xu X, Wang J, Li J, Qin S, Yuan J. Study on Prediction Model of HIV 
Incidence Based on GRU Neural Network Optimized by MHPSO. IEEE 
Access (2020) 8:49574–83. doi:10.1109/ACCESS.2020.2979859

29. Li Z, Li Y. A Comparative Study on the Prediction of the BP Artificial Neural 
Network Model and the ARIMA Model in the Incidence of AIDS. BMC Med 
Inform Decis Mak (2020) 20(1):143. doi:10.1186/s12911-020-01157-3

30. Zandavi SM, Rashidi TH, Vafaee F. Dynamic Hybrid Model to Forecast the 
Spread of COVID-19 Using LSTM and Behavioral Models Under 
Uncertainty. IEEE Trans Cybern (2022) 52(11):11977–89. doi:10.1109/ 
TCYB.2021.3120967

31. Zeroual A, Harrou F, Dairi A, Sun Y. Deep Learning Methods for Forecasting 
COVID-19 time-Series Data: A Comparative Study. Chaos Solitons Fractals 
(2020) 140. doi:10.1016/j.chaos.2020.110121

32. Zhan C, Zheng Y, Zhang H, Wen Q. Random-Forest-Bagging Broad Learning 
System with Applications for COVID-19 Pandemic. IEEE Internet Things J 
(2021) 8(21):15906–18. doi:10.1109/JIOT.2021.3066575

33. Li Z, Wang Z, Song H, Liu Q, He B, Shi P, et al. Application of a Hybrid Model 
in Predicting the Incidence of Tuberculosis in a Chinese Population. Infect 
Drug Resist (2019) 12:1011–20. doi:10.2147/IDR.S190418

34. Zhang X, Hao Y, Fei ZY, He J. Effect of Meteorological Factors on Incidence 
of Tuberculosis: A 15-Year Retrospective Study Based on Chinese Medicine 
Theory of Five Circuits and Six Qi. Chin J Integr Med (2015) 21(10):751–8. 
doi:10.1007/s11655-015-2319-7

35. Torrealba-Rodriguez O, Conde-Gutiérrez RA, Hernández-Javier AL. 
Modeling and Prediction of COVID-19 in Mexico Applying Mathematical 
and Computational Models. Chaos Solitons Fractals (2020) 138:109946. 
doi:10.1016/j.chaos.2020.109946

36. Toharudin T, Pontoh RS, Caraka RE. Indonesia in Facing New Normal: An 
Evidence Hybrid Forecasting of COVID-19 Cases Using MLP, NNAR and 
ELM. Eng Lett (2021) 29(2).

37. Tamang SK, Singh PD, Datta B. Forecasting of Covid-19 Cases Based on 
Prediction Using Artificial Neural Network Curve Fitting Technique. Glob 
J Environ Sci Management (2020) 6:53–64. doi:10.22034/GJESM.2019.06. 
SI.06

38. Sun J, Chen X, Zhang Z, Lai S, Zhao B, Liu H, et al. Forecasting the Long- 
Term Trend of COVID-19 Epidemic Using a Dynamic Model. Scientific Rep 
(2020) 10(1):1–10. doi:10.1038/s41598-020-78084-w

39. Sultana J, Singha AK, Siddiqui ST, Nagalaxmi G, Sriram AK, Pathak N. 
COVID-19 Pandemic Prediction and Forecasting Using Machine Learning 

Public Health Reviews | Owned by SSPH+ | Published by Frontiers February 2026 | Volume 47 | Article 1608074 7

Birdi et al. ML for Communicable Disease Control

https://www.emro.who.int/health-topics/infectious-diseases/index.html
https://www.emro.who.int/health-topics/infectious-diseases/index.html
https://doi.org/10.1016/S1473-3099(24)00158-0
https://doi.org/10.1016/S1473-3099(24)00158-0
https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
https://doi.org/10.3389/fpubh.2023.1102185
https://doi.org/10.1093/clinchem/hvab239
https://doi.org/10.1093/clinchem/hvab239
https://doi.org/10.1038/s41598-021-03687-w
https://doi.org/10.1186/s12911-022-01776-y
https://doi.org/10.1186/s12911-022-01776-y
https://doi.org/10.3390/make5010013
https://doi.org/10.1080/1364557032000119616
https://doi.org/10.1186/1471-2288-13-48
https://doi.org/10.1186/1471-2288-13-48
https://doi.org/10.7326/M18-0850
https://www.distillersr.com/
https://doi.org/10.3390/app112311426
https://doi.org/10.3390/app112311426
https://doi.org/10.2196/19907
https://doi.org/10.3390/healthcare8020181
https://doi.org/10.1007/s12639-021-01458-y
https://doi.org/10.32620/reks.2021.3.01
https://doi.org/10.1002/spe.2969
https://doi.org/10.1002/spe.2969
https://doi.org/10.1007/s10489-021-02359-6
https://doi.org/10.1007/s10489-021-02359-6
https://doi.org/10.1155/2021/6686745
https://doi.org/10.1016/j.bdr.2021.100286
https://doi.org/10.1016/j.bdr.2021.100286
https://doi.org/10.1016/j.rinp.2021.104495
https://doi.org/10.1016/j.rinp.2021.104495
https://doi.org/10.1007/s41870-020-00571-0
https://doi.org/10.1007/s41870-020-00571-0
https://doi.org/10.1007/s41324-021-00408-3
https://doi.org/10.1016/j.chaos.2020.110227
https://doi.org/10.1007/s40031-021-00623-4
https://doi.org/10.1109/ACCESS.2020.2979859
https://doi.org/10.1186/s12911-020-01157-3
https://doi.org/10.1109/TCYB.2021.3120967
https://doi.org/10.1109/TCYB.2021.3120967
https://doi.org/10.1016/j.chaos.2020.110121
https://doi.org/10.1109/JIOT.2021.3066575
https://doi.org/10.2147/IDR.S190418
https://doi.org/10.1007/s11655-015-2319-7
https://doi.org/10.1016/j.chaos.2020.109946
https://doi.org/10.22034/GJESM.2019.06.SI.06
https://doi.org/10.22034/GJESM.2019.06.SI.06
https://doi.org/10.1038/s41598-020-78084-w


Classifiers. Intell Automation & Soft Comput (2021) 32(2):1007–24. doi:10. 
32604/iasc.2022.021507

40. Mehta M, Julaiti J, Griffin P, Kumara S. Early Stage Machine Learning–based 
Prediction of US County Vulnerability to the COVID-19 Pandemic: Machine 
Learning Approach. JMIR Public Health Surveill (2020) 6(3):e19446. doi:10. 
2196/19446

41. Hussein T, Hammad MH, Surakhi O, Alkhanafseh M, Fung PL, Zaidan MA, 
et al. Short-Term and Long-Term COVID-19 Pandemic Forecasting 
Revisited with the Emergence of OMICRON Variant in Jordan. Vaccines 
(Basel) (2022) 10(4):569. doi:10.3390/vaccines10040569

42. Huang CJ, Shen Y, Kuo PH, Chen YH. Novel Spatiotemporal Feature 
Extraction Parallel Deep Neural Network for Forecasting Confirmed Cases 
of Coronavirus Disease 2019. Socioecon Plann Sci (2022) 80:100976. doi:10. 
1016/j.seps.2020.100976

43. Huamaní EL, Ocares-Cunyarachi L. Analysis and Prediction of Recorded 
COVID-19 Infections in the Constitutional Departments of Peru Using 
Specialized Machine Learning Techniques. Int J Emerging Technology Adv 
Eng (2021) 11(11). doi:10.46338/ijetae1121_05

44. Ghazaly NM, Abdel-Fattah MA, Abd El-Aziz AA. Novel Coronavirus 
Forecasting Model Using Nonlinear Autoregressive Artificial Neural 
Network. Int J Adv Sci Technology (2020) 1831–49. Available online at: 
https://api.semanticscholar.org/CorpusID:226691394.

45. Alsuwaiket MA. Predicting the COVID-19 Spread, Recoveries and Mortalities 
Rates in Saudi Arabia Using ANN. J Theor Appl Inf Technol (2020) 98(23): 
3643–53.

46. Abubakar IR, Olatunji SO. Computational Intelligence-Based Model for 
Diarrhea Prediction Using Demographic and Health Survey Data. Soft 
Comput (2020) 24(7):5357–66. doi:10.1007/s00500-019-04293-9

47. Gollapalli M. Ensemble Machine Learning Model to Predict the Waterborne 
Syndrome. Algorithms (2022) 15(3):93. doi:10.3390/a15030093

48. Toh KB, Bliznyuk N, Valle D. Improving National Level Spatial Mapping of 
Malaria Through Alternative Spatial and Spatio-Temporal Models. Spat 
Spatiotemporal Epidemiol (2021) 36:100394. doi:10.1016/j.sste.2020.100394

49. Ahmad I, Asad SM. Predictions of Coronavirus COVID-19 Distinct Cases in 
Pakistan Through Artificial Neural Network. Epidemiol Infect (2020). doi:10. 
1017/S0950268820002174

50. Al-Ridha MY, Anaz AS, Al-Nima RRO. Expecting Confirmed and Death 
Cases of covid-19 in Iraq by Utilizing Backpropagation Neural Network. Bull 
Electr Eng Inform (2021) 10(4):2137–43. doi:10.11591/eei.v10i4.2876

51. Aravind M, Srinath KR, Maheswari N, Sivagami M. Predicting COVID-19 
Cases in Indian States Using Random Forest Regression. Int J Curr Res Rev 
(2021) 13(6 special Issue):S-109–S-114. doi:10.31782/IJCRR.2021.SP185

52. Asfahan S, Gopalakrishnan M, Dutt N, Niwas R, Chawla G, Agarwal M, et al. 
Using a Simple Open-Source Automated Machine Learning Algorithm to 
Forecast COVID-19 Spread: A Modelling Study. Adv Respir Med (2020) 
88(5):400–5. doi:10.5603/ARM.a2020.0156

53. Ayyoubzadeh SM, Ayyoubzadeh SM, Zahedi H, Ahmadi M, Niakan Kalhori 
SR. Predicting COVID-19 Incidence Through Analysis of Google Trends 
Data in Iran: Data Mining and Deep Learning Pilot Study. JMIR Public Health 
Surveill (2020) 6(2):e18828. doi:10.2196/18828

54. Ayoub A, Mahboob K, Javed AR, Rizwan M, Gadekallu TR, Abidi MH, et al. 
Classification and Categorization of COVID-19 Outbreak in Pakistan. Comput 
Mater Continua (2021) 69(1):1253–69. doi:10.32604/cmc.2021.015655

55. Gupta KD, Dwivedi R, Sharma DK. Prediction of COVID-19 Trends in 
Europe Using Generalized Regression Neural Network Optimized by Flower 
Pollination Algorithm. J Interdiscip Mathematics (2021) 24(1):33–51. doi:10. 
1080/09720502.2020.1833447

56. Gupta VK, Gupta A, Kumar D, Sardana A. Prediction of COVID-19 
Confirmed, Death, and Cured Cases in India Using Random Forest 
Model. Big Data Mining and Analytics (2021) 4(2):116–23. doi:10.26599/ 
bdma.2020.9020016

57. Hamadneh NN, Khan WA, Ashraf W, Atawneh SH, Khan I, Hamadneh BN. 
Artificial Neural Networks for Prediction of COVID-19 in Saudi Arabia. 
Comput Mater Continua (2021) 66(3):2787–96. doi:10.32604/cmc.2021. 
013228

58. Harvey D, Valkenburg W, Amara A. Predicting Malaria Epidemics in Burkina 
Faso with Machine Learning. PLoS One (2021) 16(6 June):e0253302. doi:10. 
1371/journal.pone.0253302

59. Hashim H, Atlam E, Almaliki M, El-agamy R, El-sharkasy MM, Dagnew G, 
et al. Integrating Data Warehouse and Machine Learning to Predict On 
COVID-19 Pandemic Empirical Data. J Theor Appl Inf Technol (2021) 15(1). 
Available online at: www.jatit.org (Accessed November 1, 2023).

60. Buczak AL, Baugher B, Guven E, Ramac-Thomas LC, Elbert Y, Babin SM, 
et al. Fuzzy Association Rule Mining and Classification for the Prediction of 
Malaria in South Korea Standards, Technology, and Modeling. BMC Med 
Inform Decis Mak (2015) 15(1). doi:10.1186/s12911-015-0170-6

61. Brown BJ, Manescu P, Przybylski AA, Caccioli F, Oyinloye G, Elmi M, et al. 
Data-Driven Malaria Prevalence Prediction in Large Densely Populated 
Urban Holoendemic Sub-Saharan West Africa. Sci Rep (2020) 10(1):15918. 
doi:10.1038/s41598-020-72575-6

62. Çaparoğlu ÖF, Ok Y, Tutam M. To Restrict or Not to Restrict? Use of 
Artificial Neural Network to Evaluate the Effectiveness of Mitigation Policies: 
A Case Study of Turkey. Chaos Solitons Fractals (2021) 151. doi:10.1016/j. 
chaos.2021.111246

63. Caruso PF, Angelotti G, Greco M, Guzzetta G, Cereda D, Merler S, et al. Early 
Prediction of SARS-CoV-2 Reproductive Number from Environmental, 
Atmospheric and Mobility Data: A Supervised Machine Learning 
Approach. Int J Med Inform (2022) 162. doi:10.1016/j.ijmedinf.2022.104755

64. Chandra R, Jain A, Chauhan DS. Deep Learning via LSTM Models for 
COVID-19 Infection Forecasting in India. PLoS One (2022) 17(1 January). 
doi:10.1371/journal.pone.0262708

65. Chen LP, Zhang Q, Yi GY, He W. Model-Based Forecasting for Canadian 
COVID-19 Data. PLoS One (2021) 16(1 January):e0244536. doi:10.1371/ 
journal.pone.0244536

66. Dairi A, Harrou F, Zeroual A, Hittawe MM, Sun Y. Comparative Study of 
Machine Learning Methods for COVID-19 Transmission Forecasting. 
J. Biomed. Inform. (2021). 118, 103791. doi:10.1016/j.jbi.2021.103791

67. Elsheikh AH, Saba AI, Elaziz MA, Lu S, Shanmugan S, Muthuramalingam T, 
et al. Deep Learning-Based Forecasting Model for COVID-19 Outbreak in 
Saudi Arabia. Process Saf Environ Prot (2021) 149:223–33. doi:10.1016/j.psep. 
2020.10.048

68. Galasso J, Cao DM, Hochberg R. A Random Forest Model for Forecasting 
Regional COVID-19 Cases Utilizing Reproduction Number Estimates and 
Demographic Data. Chaos Solitons Fractals (2022) 156. doi:10.1016/j.chaos. 
2021.111779

69. Fritz C, Dorigatti E, Rügamer D. Combining Graph Neural Networks and 
Spatio-Temporal Disease Models to Improve the Prediction of Weekly 
COVID-19 Cases in Germany. Sci Rep (2022) 12(1):3930. doi:10.1038/ 
s41598-022-07757-5

70. Hamadneh NN, Tahir M, Khan WA. Using Artificial Neural Network with 
Prey Predator Algorithm for Prediction of the COVID-19: The Case of Brazil 
and Mexico. Mathematics (2021) 9(2):1–14. doi:10.3390/math9020180

71. Haq I, Hossain MI, Saleheen AAS, Nayan MIH, Mila MS. Prediction of 
COVID-19 Pandemic in Bangladesh: Dual Application of Susceptible- 
Infective-Recovered (SIR) and Machine Learning Approach. Interdiscip 
Perspect Infect Dis (2022) 2022:8570089. doi:10.1155/2022/8570089

72. Khurana S, Sharma G, Miglani N, Singh A, Alharbi A, Alosaimi W, et al. An 
Intelligent Fine-Tuned Forecasting Technique for COVID-19 Prediction 
Using Neuralprophet Model. Comput Mater Continua (2022) 71(1): 
629–49. doi:10.32604/cmc.2022.021884

73. Ksantini M, Kadri N, Ellouze A, Turki SH. Artificial Intelligence Prediction 
Algorithms for Future Evolution of COVID-19 Cases. Ingenierie des Systemes 
d’Information (2020) 25(3):319–25. doi:10.18280/isi.250305

74. Malinzi J, Gwebu S, Motsa S. Determining COVID-19 Dynamics Using 
Physics Informed Neural Networks. Axioms (2022) 11(3):121. doi:10.3390/ 
axioms11030121

75. Mfisimana LD, Nibayisabe E, Badu K, Niyukuri D. Exploring Predictive 
Frameworks for Malaria in Burundi. Infect Dis Model (2022) 7(2):33–44. 
doi:10.1016/j.idm.2022.03.003

76. Milivojević MS, Gavrovska A. Long Short-Term Memory Prediction for 
COVID19 Time Series. Telfor J (2021) 13(2):81–6. doi:10.5937/ 
telfor2102081m

77. Migriño JR, Batangan ARU. Using Machine Learning to Create a Decision 
Tree Model to Predict Outcomes of COVID-19 Cases in the Philippines. 
West Pac Surveill Response J (2021) 12(3):56–64. doi:10.5365/wpsar.2021. 
12.3.831

Public Health Reviews | Owned by SSPH+ | Published by Frontiers February 2026 | Volume 47 | Article 1608074 8

Birdi et al. ML for Communicable Disease Control

https://doi.org/10.32604/iasc.2022.021507
https://doi.org/10.32604/iasc.2022.021507
https://doi.org/10.2196/19446
https://doi.org/10.2196/19446
https://doi.org/10.3390/vaccines10040569
https://doi.org/10.1016/j.seps.2020.100976
https://doi.org/10.1016/j.seps.2020.100976
https://doi.org/10.46338/ijetae1121_05
https://api.semanticscholar.org/CorpusID:226691394
https://doi.org/10.1007/s00500-019-04293-9
https://doi.org/10.3390/a15030093
https://doi.org/10.1016/j.sste.2020.100394
https://doi.org/10.1017/S0950268820002174
https://doi.org/10.1017/S0950268820002174
https://doi.org/10.11591/eei.v10i4.2876
https://doi.org/10.31782/IJCRR.2021.SP185
https://doi.org/10.5603/ARM.a2020.0156
https://doi.org/10.2196/18828
https://doi.org/10.32604/cmc.2021.015655
https://doi.org/10.1080/09720502.2020.1833447
https://doi.org/10.1080/09720502.2020.1833447
https://doi.org/10.26599/bdma.2020.9020016
https://doi.org/10.26599/bdma.2020.9020016
https://doi.org/10.32604/cmc.2021.013228
https://doi.org/10.32604/cmc.2021.013228
https://doi.org/10.1371/journal.pone.0253302
https://doi.org/10.1371/journal.pone.0253302
http://www.jatit.org
https://doi.org/10.1186/s12911-015-0170-6
https://doi.org/10.1038/s41598-020-72575-6
https://doi.org/10.1016/j.chaos.2021.111246
https://doi.org/10.1016/j.chaos.2021.111246
https://doi.org/10.1016/j.ijmedinf.2022.104755
https://doi.org/10.1371/journal.pone.0262708
https://doi.org/10.1371/journal.pone.0244536
https://doi.org/10.1371/journal.pone.0244536
https://doi.org/10.1016/j.jbi.2021.103791
https://doi.org/10.1016/j.psep.2020.10.048
https://doi.org/10.1016/j.psep.2020.10.048
https://doi.org/10.1016/j.chaos.2021.111779
https://doi.org/10.1016/j.chaos.2021.111779
https://doi.org/10.1038/s41598-022-07757-5
https://doi.org/10.1038/s41598-022-07757-5
https://doi.org/10.3390/math9020180
https://doi.org/10.1155/2022/8570089
https://doi.org/10.32604/cmc.2022.021884
https://doi.org/10.18280/isi.250305
https://doi.org/10.3390/axioms11030121
https://doi.org/10.3390/axioms11030121
https://doi.org/10.1016/j.idm.2022.03.003
https://doi.org/10.5937/telfor2102081m
https://doi.org/10.5937/telfor2102081m
https://doi.org/10.5365/wpsar.2021.12.3.831
https://doi.org/10.5365/wpsar.2021.12.3.831


78. Mollalo A, Rivera KM, Vahedi B. Artificial Neural Network Modeling of 
Novel Coronavirus (COVID-19) Incidence Rates Across the Continental 
United States. Int J Environ Res Public Health (2020) 17(12):1–13. doi:10. 
3390/ijerph17124204

79. Niazkar HR, Niazkar M. Application of Artificial Neural Networks to Predict 
the COVID-19 Outbreak. Glob Health Res Policy (2020) 5(1):50. doi:10.1186/ 
s41256-020-00175-y

80. Ossa LFC, Chamoso P, Arango-López J, Pinto-Santos F, Isaza GA, Santa- 
Cruz-gonzález C, et al. A Hybrid Model for COVID-19 Monitoring and 
Prediction. Electronics (Switzerland) (2021) 10(7). doi:10.3390/ 
electronics10070799

81. Khayyat M, Laabidi K, Almalki N, Al-Zahrani M. Time Series Facebook 
Prophet Model and Python for COVID-19 Outbreak Prediction. Comput 
Mater Continua (2021) 67(3):3781–93. doi:10.32604/cmc.2021.014918

82. Purwandari T, Zahroh S, Hidayat Y, Sukono MM, Saputra J. Forecasting 
Model of COVID-19 Pandemic in Malaysia: An Application of Time Series 
Approach Using Neural Network. Decis Sci Lett (2022) 11(1):35–42. doi:10. 
5267/j.dsl.2021.10.001

83. Li Q, Yang Y, Wang W, Lee S, Xiao X, Gao X, et al. Unraveling the Dynamic 
Importance of County-Level Features in Trajectory of COVID-19. Sci Rep 
(2021) 11(1):13058. doi:10.1038/s41598-021-92634-w

84. Liu D, Clemente L, Poirier C, Ding X, Chinazzi M, Davis J, et al. Real-Time 
Forecasting of the COVID-19 Outbreak in Chinese Provinces: Machine Learning 
Approach Using Novel Digital Data and Estimates from Mechanistic Models. 
J Med Internet Res (2020) 22(8):e20285. doi:10.2196/20285

85. Renukadevi P, Kannan AR. COVID-19 Forecasting with Deep Learning- 
Based Half-Binomial Distribution Cat Swarm Optimization. Computer Syst 
Sci Eng (2022) 44(1):629–45. doi:10.32604/csse.2023.024217

86. Ly KT. A COVID-19 Forecasting System Using Adaptive Neuro-Fuzzy 
Inference. Financ Res Lett (2021) 41:101844. doi:10.1016/j.frl.2020.101844

87. Sahai SY, Gurukar S, KhudaBukhsh WR, Parthasarathy S, Rempała GA. A 
Machine Learning Model for Nowcasting Epidemic Incidence. Math Biosci 
(2022) 343. doi:10.1016/j.mbs.2021.108677

88. Said AB, Erradi A, Aly HA, Mohamed A. Predicting COVID-19 Cases Using 
Bidirectional LSTM on Multivariate Time Series. Environ Sci Pollut Res (2021) 
28(40):56043–52. doi:10.1007/s11356-021-14286-7

89. Saqib M. Forecasting COVID-19 Outbreak Progression Using Hybrid 
Polynomial-Bayesian Ridge Regression Model. Appl Intelligence (2022) 51: 
2703–13. doi:10.1007/s10489-020-01942-7

90. Nikparvar B, Rahman MM, Hatami F, Thill JC. Spatio-Temporal Prediction 
of the COVID-19 Pandemic in US Counties: Modeling with a Deep LSTM 
Neural Network. Sci Rep (2021) 11(1):21715. doi:10.1038/s41598-021- 
01119-3

91. Wang P, Zheng X, Li J, Zhu B. Prediction of Epidemic Trends in COVID-19 
with Logistic Model and Machine Learning Technics. Chaos Solitons Fractals 
(2020) 139. doi:10.1016/j.chaos.2020.110058

92. Warsito B, Widiharih T, Prahutama A. Short Term Prediction of Covid-19 
Cases by Using Various Types of Neural Network Model. Commun Math Biol 
Neurosci (2020) 2020:1–16.

93. Pereira IG, Guerin JM, Júnior AGS, Garcia GS, Piscitelli P, Miani A, et al. 
Forecasting COVID-19 Dynamics in Brazil: A Data Driven Approach. Int 
J Environ Res Public Health (2020) 17(14):1–26. doi:10.3390/ijerph17145115

94. Pérez-Ortega J, Almanza-Ortega NN, Torres-Poveda K, Martínez-González 
G, Zavala-Díaz JC, Pazos-Rangel R. Application of Data Science for Cluster 
Analysis of COVID-19 Mortality According to Sociodemographic Factors at 
Municipal Level in Mexico. Mathematics (2022) 10(13). doi:10.3390/ 
math10132167

95. Watson GL, Xiong D, Zhang L, Zoller JA, Shamshoian J, Sundin P, et al. 
Pandemic Velocity: Forecasting COVID-19 in the US with a Machine 
Learning & Bayesian Time Series Compartmental Model. Plos Comput 
Biol (2021) 17(3):e1008837. doi:10.1371/journal.pcbi.1008837

96. Yeung AYS, Roewer-Despres F, Rosella L, Rudzicz F. Machine Learning- 
Based Prediction of Growth in Confirmed COVID-19 Infection Cases in 
114 Countries Using Metrics of Nonpharmaceutical Interventions and 
Cultural Dimensions: Model Development and Validation. J Med Internet 
Res (2021) 23(4):e26628. doi:10.2196/26628

97. Yu CS, Chang SS, Chang TH, Wu JL, Lin YJ, Chien HF, et al. A COVID-19 
Pandemic Artificial Intelligence-Based System with Deep Learning Forecasting 

and Automatic Statistical Data Acquisition: Development and Implementation 
Study. J Med Internet Res (2021) 23(5):e27806. doi:10.2196/27806

98. Zhou B, Yang G, Shi Z, Ma S. Interpretable Temporal Attention Network for 
COVID-19 Forecasting. Appl Soft Comput (2022) 120. doi:10.1016/j.asoc. 
2022.108691

99. Zrieq R, Boubaker S, Kamel S, Alzain M, Algahtani FD. Analysis and 
Modeling of COVID-19 Epidemic Dynamics in Saudi Arabia Using SIR- 
PSO and Machine Learning Approaches. J Infect Dev Ctries (2022) 16(1): 
90–100. doi:10.3855/jidc.15004

100. Vadyala SR, Betgeri SN, Sherer EA, Amritphale A. Prediction of the Number 
of COVID-19 Confirmed Cases Based on K-Means-LSTM. Array (2021) 11: 
100085. doi:10.1016/j.array.2021.100085

101. Wieczorek M, Silka J, Polap D, Wozniak M, Damaševicius R. Real-Time 
Neural Network Based Predictor for COVID-19 Virus Spread. PLoS One 
(2020) 15(12 December). doi:10.1371/journal.pone.0243189

102. Wieczorek M, Siłka J, Woźniak M. Neural Network Powered COVID-19 
Spread Forecasting Model. Chaos Solitons Fractals (2020) 1:140. doi:10.1016/j. 
chaos.2020.110203

103. Yesilkanat CM. Spatio-Temporal Estimation of the Daily Cases of COVID-19 
in Worldwide Using Random Forest Machine Learning Algorithm. Chaos 
Solitons Fractals (2020) 140. doi:10.1016/j.chaos.2020.110210

104. Yudistira N. COVID-19 Growth Prediction Using Multivariate Long Short 
Term Memory. IAENG Int J Comput Sci (2020) 47(4). doi:10.48550/arXiv. 
2005.04809

105. Zawbaa HM, El-Gendy A, Saeed H, Osama H, Ali AMA, Gomaa D, et al. A 
Study of the Possible Factors Affecting COVID-19 Spread, Severity and 
Mortality and the Effect of Social Distancing on These Factors: Machine 
Learning Forecasting Model. Int J Clin Pract (2021) 75(6):e14116. doi:10. 
1111/ijcp.14116

106. Gray JD, Harris CR, Wylezinski LS, Spurlock CF. Predictive Modeling of 
COVID-19 Case Growth Highlights Evolving Racial and Ethnic Risk Factors 
in Tennessee and Georgia. BMJ Health Care Inform (2021) 28(1):e100349. 
doi:10.1136/bmjhci-2021-100349

107. Marin-Gomez FX, Fàbregas-Escurriola M, Seguí FL, Pérez EH, Camps MB, 
Peña JM, et al. Assessing the Likelihood of Contracting COVID-19 Disease 
Based on a Predictive Tree Model: A Retrospective Cohort Study. PLoS One 
(2021) 16(3 March). doi:10.1371/journal.pone.0247995

108. Li B, Quinn RJ, Meghani S, Chittams JL, Rajput V. Segregation Predicts 
COVID-19 Fatalities in less Densely Populated Counties. Cureus (2022). 
doi:10.7759/cureus.21319

109. Castillo-Olea C, Conte-Galván R, Zuñiga C, Siono A, Huerta A, Bardhi O, 
et al. Early Stage Identification of COVID-19 Patients in Mexico Using 
Machine Learning: A Case Study for the Tijuana General Hospital. 
Information (Switzerland) (2021) 12(12). doi:10.3390/info12120490

110. Cui S, Wang Y, Wang D, Sai Q, Huang Z, Cheng TCE. A Two-Layer Nested 
Heterogeneous Ensemble Learning Predictive Method for COVID-19 
Mortality. Appl Soft Comput (2021) 113. doi:10.1016/j.asoc.2021.107946

111. Hariharan R. Random Forest Regression Analysis on Combined Role of 
Meteorological Indicators in Disease Dissemination in an Indian City: A Case 
Study of New Delhi. Urban Clim (2021) 36. doi:10.1016/j.uclim.2021.100780

112. Jamshidnezhad A, Hosseini SA, Ghavamabadi LI, Marashi SMH, Mousavi H, 
Zilae M, et al. The Role of Ambient Parameters on Transmission Rates of the 
COVID-19 Outbreak: A Machine Learning Model. Work (2021) 70(2): 
377–85. doi:10.3233/WOR-210463

113. Kianfar N, Mesgari MS, Mollalo A, Kaveh M. Spatio-Temporal Modeling of 
COVID-19 Prevalence and Mortality Using Artificial Neural Network 
Algorithms. Spat Spatiotemporal Epidemiol (2022) 40. doi:10.1016/j.sste. 
2021.100471

114. McCoy D, Mgbara W, Horvitz N, Getz WM, Hubbard A. Ensemble Machine 
Learning of Factors Influencing COVID-19 Across US Counties. Scientific 
Rep (2021) 11(1):1–14. doi:10.1038/s41598-021-90827-x

115. Snider B, McBean EA, Yawney J, Gadsden SA, Patel B. Identification of 
Variable Importance for Predictions of Mortality from COVID-19 Using AI 
Models for Ontario, Canada. Front Public Health (2021). doi:10.3389/fpubh. 
2021.675766

116. Tiwari A, Dadhania AV, Ragunathrao VAB, Oliveira ERA. Using Machine 
Learning to Develop a Novel COVID-19 Vulnerability Index (C19VI). Sci 
Total Environ (2021) 773:145650. doi:10.1016/j.scitotenv.2021.145650

Public Health Reviews | Owned by SSPH+ | Published by Frontiers February 2026 | Volume 47 | Article 1608074 9

Birdi et al. ML for Communicable Disease Control

https://doi.org/10.3390/ijerph17124204
https://doi.org/10.3390/ijerph17124204
https://doi.org/10.1186/s41256-020-00175-y
https://doi.org/10.1186/s41256-020-00175-y
https://doi.org/10.3390/electronics10070799
https://doi.org/10.3390/electronics10070799
https://doi.org/10.32604/cmc.2021.014918
https://doi.org/10.5267/j.dsl.2021.10.001
https://doi.org/10.5267/j.dsl.2021.10.001
https://doi.org/10.1038/s41598-021-92634-w
https://doi.org/10.2196/20285
https://doi.org/10.32604/csse.2023.024217
https://doi.org/10.1016/j.frl.2020.101844
https://doi.org/10.1016/j.mbs.2021.108677
https://doi.org/10.1007/s11356-021-14286-7
https://doi.org/10.1007/s10489-020-01942-7
https://doi.org/10.1038/s41598-021-01119-3
https://doi.org/10.1038/s41598-021-01119-3
https://doi.org/10.1016/j.chaos.2020.110058
https://doi.org/10.3390/ijerph17145115
https://doi.org/10.3390/math10132167
https://doi.org/10.3390/math10132167
https://doi.org/10.1371/journal.pcbi.1008837
https://doi.org/10.2196/26628
https://doi.org/10.2196/27806
https://doi.org/10.1016/j.asoc.2022.108691
https://doi.org/10.1016/j.asoc.2022.108691
https://doi.org/10.3855/jidc.15004
https://doi.org/10.1016/j.array.2021.100085
https://doi.org/10.1371/journal.pone.0243189
https://doi.org/10.1016/j.chaos.2020.110203
https://doi.org/10.1016/j.chaos.2020.110203
https://doi.org/10.1016/j.chaos.2020.110210
https://doi.org/10.48550/arXiv.2005.04809
https://doi.org/10.48550/arXiv.2005.04809
https://doi.org/10.1111/ijcp.14116
https://doi.org/10.1111/ijcp.14116
https://doi.org/10.1136/bmjhci-2021-100349
https://doi.org/10.1371/journal.pone.0247995
https://doi.org/10.7759/cureus.21319
https://doi.org/10.3390/info12120490
https://doi.org/10.1016/j.asoc.2021.107946
https://doi.org/10.1016/j.uclim.2021.100780
https://doi.org/10.3233/WOR-210463
https://doi.org/10.1016/j.sste.2021.100471
https://doi.org/10.1016/j.sste.2021.100471
https://doi.org/10.1038/s41598-021-90827-x
https://doi.org/10.3389/fpubh.2021.675766
https://doi.org/10.3389/fpubh.2021.675766
https://doi.org/10.1016/j.scitotenv.2021.145650


117. Absar N, Uddin N, Khandaker MU, Ullah H. The Efficacy of Deep Learning 
Based LSTM Model in Forecasting the Outbreak of Contagious Diseases. 
Infect Dis Model (2022) 7(1):170–83. doi:10.1016/j.idm.2021.12.005

118. Butaru AE, Mămuleanu M, Streba CT, Doica IP, Diculescu MM, Gheonea DI, 
et al. Resource Management Through Artificial Intelligence in Screening 
Programs—Key for the Successful Elimination of Hepatitis C. Diagnostics 
(2022) 12(2):346. doi:10.3390/diagnostics12020346

119. Favas C, Jarrett P, Ratnayake R, Watson OJ, Checchi F. Country Differences 
in Transmissibility, Age Distribution and Case-Fatality of SARS-CoV-2: A 
Global Ecological Analysis. Int J Infect Dis (2022) 114:210–8. doi:10.1016/j. 
ijid.2021.11.004

120. Cai M, Shah N, Li J, Chen WH, Cuomo RE, Obradovich N, et al. Identification 
and Characterization of Tweets Related to the 2015 Indiana HIV Outbreak: A 
Retrospective Infoveillance Study. Plos ONE Public Libr Sci (2020) 15: 
e0235150. doi:10.1371/journal.pone.0235150

121. Cuomo RE, Purushothaman V, Li J, Cai M, Mackey TK. A Longitudinal and 
Geospatial Analysis of COVID-19 Tweets During the Early Outbreak Period 
in the United States. BMC Public Health (2021) 21(1):793. doi:10.1186/ 
s12889-021-10827-4

122. Cuomo RE, Cai M, Shah N, Li J, Chen WH, Obradovich N, et al. 
Characterising Communities Impacted by the 2015 Indiana HIV 
Outbreak: A Big Data Analysis of Social Media Messages Associated with 
HIV and Substance Abuse. Drug Alcohol Rev (2020) 39(7):908–13. doi:10. 
1111/dar.13091

123. Elkhadrawi M, Stevens BA, Wheeler BJ, Akcakaya M, Wheeler S. 
Machine Learning Classification of False-Positive Human 
Immunodeficiency Virus Screening Results. J Pathol Inform (2021) 
12(1):46. doi:10.4103/jpi.jpi_7_21

124. Fan CY, Fann JCY, Yang MC, Lin TY, Chen HH, Liu JT, et al. Estimating 
Global Burden of COVID-19 with disability-Adjusted Life Years and Value of 
Statistical Life Metrics. J Formos Med Assoc (2021) 120:S106–17. doi:10.1016/j. 
jfma.2021.05.019

125. Fernandes N, Costa D, Costa D, Keating J, Arantes J. Predicting covid- 
19 Vaccination Intention: The Determinants of Vaccine Hesitancy. Vaccines 
(Basel) (2021) 9(10):1161. doi:10.3390/vaccines9101161

126. Fung ICH, Jackson AM, Ahweyevu JO, Grizzle JH, Yin J, Tse ZTH, et al. 
#Globalhealth Twitter Conversations on #Malaria, #HIV, #TB, #NCDS, and 
#NTDS: A Cross-Sectional Analysis. Ann Glob Health (2017) 83(3–4):682–90. 
doi:10.1016/j.aogh.2017.09.006

127. Gerts D, Shelley CD, Parikh N, Pitts T, Ross CW, Fairchild G, et al. “Thought 
I’D Share First” and Other Conspiracy Theory Tweets from the COVID-19 
Infodemic: Exploratory Study. JMIR Public Health Surveill (2021) 7(4): 
e26527. doi:10.2196/26527

128. Han Y, Huang J, Li R, Shao Q, Han D, Luo X, et al. Impact Analysis of 
Environmental and Social Factors on Early-Stage COVID-19 Transmission in 
China by Machine Learning. Environ Res (2022) 208:112761. doi:10.1016/j. 
envres.2022.112761

129. Jantzen R, Maltais M, Broët P. Socio-Demographic Factors Associated with 
COVID-19 Vaccine Hesitancy Among Middle-Aged Adults During the 
Quebec’s Vaccination Campaign. Front Public Health (2022). doi:10.3389/ 
fpubh.2022.756037

130. Jung Smok, Endo A, Akhmetzhanov AR, Nishiura H. Predicting the Effective 
Reproduction Number of COVID-19: Inference Using Human Mobility, 
Temperature, and Risk Awareness. Int J Infect Dis (2021) 113:47–54. doi:10. 
1016/j.ijid.2021.10.007

131. Zaidi SAJ, Tariq S, Belhaouari SB. Future Prediction of COVID-19 Vaccine 
Trends Using a Voting Classifier. Data (Basel) (2021) 6(11):112. doi:10.3390/ 
data6110112

132. Zheng S, Hu X. Early Warning Method for Public Health Emergency Under 
Artificial Neural Network in the Context of Deep Learning. Front Psychol 
(2021) 12. doi:10.3389/fpsyg.2021.594031

133. Zhu G, Li J, Meng Z, Yu Y, Li Y, Tang X, et al. Learning from Large-Scale 
Wearable Device Data for Predicting Epidemics Trend of COVID-19. Discrete 
Dyn Nat Soc (2020) 2020. doi:10.1155/2020/6152041

134. Jiang JY, Zhou Y, Chen X, Jhou YR, Zhao L, Liu S, et al. COVID-19 Surveiller: 
Toward a Robust and Effective Pandemic Surveillance System Basedon Social 
Media Mining. Philos Trans A Math Phys Eng Sci (2022) 380(2214):20210125. 
doi:10.1098/rsta.2021.0125

135. Chikusi H, Leo J, Kaijage S. Machine Learning Model for Prediction and 
Visualization of HIV Index Testing in Northern Tanzania. IJACSA Int 
J Adv Computer Sci Appl (2022) 13(2):2022. doi:10.14569/ijacsa.2022. 
0130246

136. Hasan N. A Methodological Approach for Predicting COVID-19 Epidemic 
Using EEMD-ANN Hybrid Model. Internet of Things (Netherlands) (2020) 
11:100228. doi:10.1016/j.iot.2020.100228

137. Xylogiannopoulos KF, Karampelas P, Alhajj R. COVID-19 Pandemic Spread 
Against Countries’ Non-Pharmaceutical Interventions Responses: A Data- 
Mining Driven Comparative Study. BMC Public Health (2021) 21(1):1607. 
doi:10.1186/s12889-021-11251-4

138. Marvel SW, House JS, Wheeler M, Song K, Zhou YH, Wright FA, et al. The 
COVID-19 Pandemic Vulnerability Index (PVI) Dashboard: Monitoring 
County-Level Vulnerability Using Visualization, Statistical Modeling, and 
Machine Learning. Environ Health Perspect (2021) 129(1):017701- 
1–017701–3. doi:10.1289/EHP8690

139. Pérez Abreu CR, Estrada S, De-La-torre-gutiérrez H. A Two-Step Polynomial 
and Nonlinear Growth Approach for Modeling covid-19 Cases in Mexico. 
Mathematics (2021) 9(18). doi:10.3390/math9182180

140. Tajmouati S, Wahbi BE, Dakkon M. Modeling COVID-19 Confirmed Cases 
Using a Hybrid Model. Adv Decis Sci (2022) 26(1):128–62. doi:10.47654/ 
v26y2022i1p128-162

141. Xu L, Magar R, Barati FA. Forecasting COVID-19 New Cases Using Deep 
Learning Methods. Comput Biol Med (2022) 144. doi:10.1016/j.compbiomed. 
2022.105342

142. Tuli S, Tuli S, Tuli R, Gill SS. Predicting the Growth and Trend of 
COVID-19 Pandemic Using Machine Learning and Cloud Computing. 
Internet of Things (Netherlands) (2020) 11:100222. doi:10.1016/j.iot. 
2020.100222

143. Shahid F, Zameer A, Muneeb M. Predictions for COVID-19 with Deep 
Learning Models of LSTM, GRU and Bi-LSTM. Chaos Solitons Fractals (2020) 
1:140. doi:10.1016/j.chaos.2020.110212

144. Rauf HT, Lali MIU, Khan MA, Kadry S, Alolaiyan H, Razaq A, et al. Time 
Series Forecasting of COVID-19 Transmission in Asia Pacific Countries 
Using Deep Neural Networks. Pers Ubiquitous Comput (2023) 27(3): 
733–50. doi:10.1007/s00779-020-01494-0

145. Rahmadani F, Lee H. Hybrid Deep Learning-Based Epidemic Prediction 
Framework of COVID-19: South Korea Case. Appl Sci (Switzerland) (2020) 
10(23):1–21. doi:10.3390/app10238539

146. Quilodrán-Casas C, Silva VLS, Arcucci R, Heaney CE, Guo YK, Pain CC. 
Digital Twins Based on Bidirectional LSTM and GAN for Modelling the 
COVID-19 Pandemic. Neurocomputing (2022) 470:11–28. doi:10.1016/j. 
neucom.2021.10.043

147. Raheja S, Kasturia S, Cheng X, Kumar M. Machine Learning-Based Diffusion 
Model for Prediction of Coronavirus-19 Outbreak. Neural Comput Appl 
(2023) 35(19):13755–74. doi:10.1007/s00521-021-06376-x

148. Pourghasemi HR, Pouyan S, Heidari B, Farajzadeh Z, Fallah Shamsi SR, 
Babaei S, et al. Spatial Modeling, Risk Mapping, Change Detection, and 
Outbreak Trend Analysis of Coronavirus (COVID-19) in Iran (Days Between 
February 19 and June 14, 2020). Int J Infect Dis (2020) 98:90–108. doi:10.1016/ 
j.ijid.2020.06.058

149. Prasanth S, Singh U, Kumar A, Tikkiwal VA, Chong PHJ. Forecasting Spread 
of COVID-19 Using Google Trends: A Hybrid GWO-Deep Learning 
Approach. Chaos Solitons Fractals (2021) 142. doi:10.1016/j.chaos.2020. 
110336

150. Oshinubi K, Amakor A, Peter OJ, Rachdi M, Demongeot J. Approach to 
COVID-19 Time Series Data Using Deep Learning and Spectral Analysis 
Methods. AIMS Bioeng (2021) 9(1):1–21. doi:10.3934/bioeng.2022001

151. Oshinubi K, Al-Awadhi F, Rachdi M, Demongeot J. Data Analysis and 
Forecasting of COVID-19 Pandemic in Kuwait Based on Daily 
Observation and Basic Reproduction Number Dynamics. Kuwait J.Sci. 
(2021). doi:10.48129/kjs.splcov.14501

152. Niraula P, Mateu J, Chaudhuri S. A Bayesian Machine Learning Approach for 
Spatio-Temporal Prediction of COVID-19 Cases. Stochastic Environ Res Risk 
Assess (2022) 36(8):2265–83. doi:10.1007/s00477-021-02168-w

153. Nguyen DQ, Vo NQ, Nguyen TT, Nguyen-An K, Nguyen QH, Tran DN, et al. 
BeCaked: An Explainable Artificial Intelligence Model for COVID-19 
Forecasting. Sci Rep (2022) 12(1):7969. doi:10.1038/s41598-022-11693-9

Public Health Reviews | Owned by SSPH+ | Published by Frontiers February 2026 | Volume 47 | Article 1608074 10

Birdi et al. ML for Communicable Disease Control

https://doi.org/10.1016/j.idm.2021.12.005
https://doi.org/10.3390/diagnostics12020346
https://doi.org/10.1016/j.ijid.2021.11.004
https://doi.org/10.1016/j.ijid.2021.11.004
https://doi.org/10.1371/journal.pone.0235150
https://doi.org/10.1186/s12889-021-10827-4
https://doi.org/10.1186/s12889-021-10827-4
https://doi.org/10.1111/dar.13091
https://doi.org/10.1111/dar.13091
https://doi.org/10.4103/jpi.jpi_7_21
https://doi.org/10.1016/j.jfma.2021.05.019
https://doi.org/10.1016/j.jfma.2021.05.019
https://doi.org/10.3390/vaccines9101161
https://doi.org/10.1016/j.aogh.2017.09.006
https://doi.org/10.2196/26527
https://doi.org/10.1016/j.envres.2022.112761
https://doi.org/10.1016/j.envres.2022.112761
https://doi.org/10.3389/fpubh.2022.756037
https://doi.org/10.3389/fpubh.2022.756037
https://doi.org/10.1016/j.ijid.2021.10.007
https://doi.org/10.1016/j.ijid.2021.10.007
https://doi.org/10.3390/data6110112
https://doi.org/10.3390/data6110112
https://doi.org/10.3389/fpsyg.2021.594031
https://doi.org/10.1155/2020/6152041
https://doi.org/10.1098/rsta.2021.0125
https://doi.org/10.14569/ijacsa.2022.0130246
https://doi.org/10.14569/ijacsa.2022.0130246
https://doi.org/10.1016/j.iot.2020.100228
https://doi.org/10.1186/s12889-021-11251-4
https://doi.org/10.1289/EHP8690
https://doi.org/10.3390/math9182180
https://doi.org/10.47654/v26y2022i1p128-162
https://doi.org/10.47654/v26y2022i1p128-162
https://doi.org/10.1016/j.compbiomed.2022.105342
https://doi.org/10.1016/j.compbiomed.2022.105342
https://doi.org/10.1016/j.iot.2020.100222
https://doi.org/10.1016/j.iot.2020.100222
https://doi.org/10.1016/j.chaos.2020.110212
https://doi.org/10.1007/s00779-020-01494-0
https://doi.org/10.3390/app10238539
https://doi.org/10.1016/j.neucom.2021.10.043
https://doi.org/10.1016/j.neucom.2021.10.043
https://doi.org/10.1007/s00521-021-06376-x
https://doi.org/10.1016/j.ijid.2020.06.058
https://doi.org/10.1016/j.ijid.2020.06.058
https://doi.org/10.1016/j.chaos.2020.110336
https://doi.org/10.1016/j.chaos.2020.110336
https://doi.org/10.3934/bioeng.2022001
https://doi.org/10.48129/kjs.splcov.14501
https://doi.org/10.1007/s00477-021-02168-w
https://doi.org/10.1038/s41598-022-11693-9


154. Utsunomiya YT, Utsunomiya ATH, Torrecilha RBP, Paulan Sde C, Milanesi 
M, Garcia JF. Growth Rate and Acceleration Analysis of the COVID-19 
Pandemic Reveals the Effect of Public Health Measures in Real Time. Front 
Med (Lausanne) (2020) 7:247. doi:10.3389/fmed.2020.00247

155. Naeem M, Yu J, Aamir M, Khan SA, Adeleye O, Khan Z. Comparative Analysis 
of Machine Learning Approaches to Analyze and Predict the COVID-19 
Outbreak. Peerj Comput Sci (2021) 7:e746. doi:10.7717/peerj-cs.746

156. Mansour S, Abulibdeh A, Alahmadi M, Ramadan E. Spatial Assessment of 
COVID-19 First-Wave Mortality Risk in the Global South. Prof Geographer 
(2022) 74(3):440–58. doi:10.1080/00330124.2021.2009888

157. Ture M, Kurt I. Comparison of Four Different Time Series Methods to 
Forecast Hepatitis A Virus Infection. Expert Syst Appl (2006) 31(1):41–6. 
doi:10.1016/j.eswa.2005.09.002

158. Satu MS, Howlader KC, Mahmud M, Shamim Kaiser M, Islam SMS, Quinn 
JMW, et al. Short-Term Prediction of COVID-19 Cases Using Machine 
Learning Models. Appl Sci (Switzerland) (2021) 11(9):4266. doi:10.3390/ 
app11094266

159. Mahmud SKG, Mishu MC, Nandi D. Predicting Spread, Recovery and Death 
due to COVID-19 Using a Time-Series Model (Prophet). AIUB J Sci Eng 
(2021) 20:71–6. doi:10.53799/ajse.v20i1.152

160. Liu F, Wang J, Liu J, Li Y, Liu D, Tong J, et al. Predicting and Analyzing the 
COVID-19 Epidemic in China: Based on SEIRD, LSTM and GWR Models. 
PLoS One (2020) 15(8 August):e0238280. doi:10.1371/journal.pone.0238280

161. Rahman M, Ahmed MT, Nur S, Touhidul Islam AZM. The Prediction of 
Coronavirus Disease 2019 Outbreak on Bangladesh Perspective Using 
Machine Learning: A Comparative Study. Int J Electr Computer Eng 
(2022) 12(4):4276–87. doi:10.11591/ijece.v12i4.pp4276-4287

162. Kuo CP, Fu JS. Evaluating the Impact of Mobility on COVID-19 Pandemic 
with Machine Learning Hybrid Predictions. Sci Total Environ (2021) 758. 
doi:10.1016/j.scitotenv.2020.144151

163. Krivorotko O, Sosnovskaia M, Vashchenko I, Kerr C, Lesnic D. Agent-Based 
Modeling of COVID-19 Outbreaks for New York State and UK: Parameter 
Identification Algorithm. Infect Dis Model (2022) 7(1):30–44. doi:10.1016/j. 
idm.2021.11.004

164. Price BS, Khodaverdi M, Halasz A, Hendricks B, Kimble W, Smith GS, et al. 
Predicting Increases in COVID-19 Incidence to Identify Locations for 
Targeted Testing in West Virginia: A Machine Learning Enhanced 
Approach. PLoS One (2021) 16(11 November):e0259538. doi:10.1371/ 
journal.pone.0259538

165. Khan IM, Haque U, Zhang W, Zafar S, Wang Y, He J, et al. COVID-19 in 
China: Risk Factors and R0 Revisited. Acta Trop (2021) 213. doi:10.1016/j. 
actatropica.2020.105731

166. Kalantari M. Forecasting COVID-19 Pandemic Using Optimal Singular 
Spectrum Analysis. Chaos Solitons Fractals (2021) 142. doi:10.1016/j.chaos. 
2020.110547

167. Nazari J, Fathi PS, Sharahi N, Taheri M, Amini P, Almasi-Hashiani A. 
Evaluating Measles Incidence Rates Using Machine Learning and Time 
Series Methods in the Center of Iran, 1997-2020. Iran J Public Health 
(2022) 51:904–12. doi:10.18502/ijph.v51i4.9252

168. Nayan AA, Kijsirikul B, Iwahori Y. Coronavirus Disease Situation Analysis 
and Prediction Using Machine Learning: A Study on Bangladeshi Population. 
Int J Electr Computer Eng (2022) 12(4):4217–27. doi:10.11591/ijece.v12i4. 
pp4217-4227

169. Majhi R, Thangeda R, Sugasi RP, Kumar N. Analysis and Prediction of 
COVID-19 Trajectory: A Machine Learning Approach. J Public Aff (2021) 
21(4):e2537. doi:10.1002/pa.2537

170. Lucas TCD, Nandi AK, Keddie SH, Chestnutt EG, Howes RE, Rumisha SF, 
et al. Improving Disaggregation Models of Malaria Incidence by Ensembling 
Non-Linear Models of Prevalence. Spat Spatiotemporal Epidemiol (2022) 41. 
doi:10.1016/j.sste.2020.100357

171. Lucas B, Vahedi B, Karimzadeh M. A Spatiotemporal Machine Learning 
Approach to Forecasting COVID-19 Incidence at the County Level in the 
USA. Int J Data Sci Anal (2023) 15(3):247–66. doi:10.1007/s41060-021- 
00295-9

172. Lounis M, Torrealba-Rodriguez O, Conde-Gutiérrez RA. Predictive Models 
for COVID-19 Cases, Deaths and Recoveries in Algeria. Results Phys (2021) 
30. doi:10.1016/j.rinp.2021.104845

173. Likassa HT, Xain W, Tang X, Gobebo G. Predictive Models on COVID 19: 
What Africans Should Do? Infect Dis Model (2021) 6:302–12. doi:10.1016/j. 
idm.2020.10.015

174. Fernandes da Silva C, Candido Junior A, Pedro Lopes R. Predictive Analysis 
of COVID-19 Symptoms in Social Networks Through Machine Learning. 
Electronics (Basel) (2022) 11(4):580. doi:10.3390/electronics11040580

175. Khakharia A, Shah V, Jain S, Shah J, Tiwari A, Daphal P, et al. Outbreak 
Prediction of COVID-19 for Dense and Populated Countries Using Machine 
Learning. Ann Data Sci (2021) 8(1):1–19. doi:10.1007/s40745-020-00314-9

176. Kao IH, Perng JW. Early Prediction of Coronavirus Disease Epidemic Severity 
in the Contiguous United States Based on Deep Learning. Results Phys (2021). 
doi:10.1016/j.rinp.2021.104287

177. Jiang G, Wu J, Weidhaas J, Li X, Chen Y, Mueller J, et al. Artificial Neural 
Network-Based Estimation of COVID-19 Case Numbers and Effective 
Reproduction Rate Using Wastewater-Based Epidemiology. Water Res 
(2022) 218:118451. doi:10.1016/j.watres.2022.118451

178. Anđelić N, Šegota SB, Lorencin I, Mrzljak V, Car Z. Estimation of COVID-19 
Epidemic Curves Using Genetic Programming Algorithm. Health Inform J 
(2021) 27(1):1–40. doi:10.1177/1460458220976728

179. Fang X, Liu W, Ai J, He M, Wu Y, Shi Y, et al. Forecasting Incidence of 
Infectious Diarrhea Using Random Forest in Jiangsu Province, China. BMC 
Infect Dis (2020) 20(1):222. doi:10.1186/s12879-020-4930-2

180. Abdullahi T, Nitschke G, Sweijd N. Predicting Diarrhoea Outbreaks with 
Climate Change. PLoS One (2022) 17(4 April):e0262008. doi:10.1371/journal. 
pone.0262008

181. Jia W, Wan Y, Li Y, Tan K, Lei W, Hu Y, et al. Integrating Multiple Data 
Sources and Learning Models to Predict Infectious Diseases in China. AMIA 
Summits Translational Sci Proc (2019) 2019:680–5.

182. Abdullah WD, Jasim AA, Hazim LR. Predictions and Visualization for 
Confirmed, Recovered and Deaths COVID-19 Cases in Iraq. Indonesian 
J Electr Eng Computer Sci (2022) 26(2):1197–205. doi:10.11591/ijeecs.v26.i2. 
pp1197-1205

183. Al MRH, Omar E, Taha K, Al-Sharif M, Aref A. Covid-19 Global Spread 
Analyzer: An ML-based Attempt. J Computer Sci (2020) 16(9):1291–305. 
doi:10.3844/jcssp.2020.1291.1305

184. Almazroi AA, Usmani RSA. COVID-19 Cases Prediction in Saudi Arabia 
Using Tree-Based Ensemble Models. Intell Automation Soft Comput (2022) 
32(1):389–400. doi:10.32604/iasc.2022.020588

185. Al-Qaness MAA, Ewees AA, Fan H, Abualigah L, Elaziz MA. Marine 
Predators Algorithm for Forecasting Confirmed Cases of COVID-19 in 
Italy, USA, Iran and Korea. Int J Environ Res Public Health (2020) 17(10). 
doi:10.3390/ijerph17103520

186. Alshabeeb IA, Majeed Azeez R, Mohammed W, Shakir R. Machine Learning 
Techniques and Forecasting Methods for Analyzing and Predicting COVID- 
19. Int J Mathematics Computer Sci (2022) 17. Available online at: http:// 
ijmcs.future-in-tech.net (Accessed November 1, 2023).

187. Al-Qaness MAA, Ewees AA, Fan H, El Aziz MA. Optimization Method for 
Forecasting Confirmed Cases of COVID-19 in China. J Clin Med (2020) 9(3). 
doi:10.3390/jcm9030674

188. Alzahrani SI, Aljamaan IA, Al-Fakih EA. Forecasting the Spread of the 
COVID-19 Pandemic in Saudi Arabia Using ARIMA Prediction Model 
Under Current Public Health Interventions. J Infect Public Health (2020) 
13(7):914–9. doi:10.1016/j.jiph.2020.06.001

189. Althomsons SP, Winglee K, Heilig CM, Talarico S, Silk B, Wortham J, et al. 
Using Machine Learning Techniques and National Tuberculosis Surveillance 
Data to Predict Excess Growth in Genotyped Tuberculosis Clusters. Am 
J Epidemiol (2022) 191(11):1936–43. doi:10.1093/aje/kwac117

190. An Q, Wu J, Meng J, Zhao Z, Bai JJ, Li X. Using the Hybrid EMD-BPNN 
Model to Predict the Incidence of HIV in Dalian, Liaoning Province, China, 
2004–2018. BMC Infect Dis (2022) 22(1):102. doi:10.1186/s12879-022- 
07061-7

191. Antweiler D, Sessler D, Rossknecht M, Abb B, Ginzel S, Kohlhammer J. 
Uncovering Chains of Infections Through Spatio-Temporal and Visual 
Analysis of COVID-19 Contact Traces. Comput Graphics (Pergamon) 
(2022) 106:1–8. doi:10.1016/j.cag.2022.05.013

192. Arora R, Agrawal A, Arora R, Poonia RC, Madaan V. Prediction and 
Forecasting of COVID-19 Outbreak Using Regression and ARIMA 

Public Health Reviews | Owned by SSPH+ | Published by Frontiers February 2026 | Volume 47 | Article 1608074 11

Birdi et al. ML for Communicable Disease Control

https://doi.org/10.3389/fmed.2020.00247
https://doi.org/10.7717/peerj-cs.746
https://doi.org/10.1080/00330124.2021.2009888
https://doi.org/10.1016/j.eswa.2005.09.002
https://doi.org/10.3390/app11094266
https://doi.org/10.3390/app11094266
https://doi.org/10.53799/ajse.v20i1.152
https://doi.org/10.1371/journal.pone.0238280
https://doi.org/10.11591/ijece.v12i4.pp4276-4287
https://doi.org/10.1016/j.scitotenv.2020.144151
https://doi.org/10.1016/j.idm.2021.11.004
https://doi.org/10.1016/j.idm.2021.11.004
https://doi.org/10.1371/journal.pone.0259538
https://doi.org/10.1371/journal.pone.0259538
https://doi.org/10.1016/j.actatropica.2020.105731
https://doi.org/10.1016/j.actatropica.2020.105731
https://doi.org/10.1016/j.chaos.2020.110547
https://doi.org/10.1016/j.chaos.2020.110547
https://doi.org/10.18502/ijph.v51i4.9252
https://doi.org/10.11591/ijece.v12i4.pp4217-4227
https://doi.org/10.11591/ijece.v12i4.pp4217-4227
https://doi.org/10.1002/pa.2537
https://doi.org/10.1016/j.sste.2020.100357
https://doi.org/10.1007/s41060-021-00295-9
https://doi.org/10.1007/s41060-021-00295-9
https://doi.org/10.1016/j.rinp.2021.104845
https://doi.org/10.1016/j.idm.2020.10.015
https://doi.org/10.1016/j.idm.2020.10.015
https://doi.org/10.3390/electronics11040580
https://doi.org/10.1007/s40745-020-00314-9
https://doi.org/10.1016/j.rinp.2021.104287
https://doi.org/10.1016/j.watres.2022.118451
https://doi.org/10.1177/1460458220976728
https://doi.org/10.1186/s12879-020-4930-2
https://doi.org/10.1371/journal.pone.0262008
https://doi.org/10.1371/journal.pone.0262008
https://doi.org/10.11591/ijeecs.v26.i2.pp1197-1205
https://doi.org/10.11591/ijeecs.v26.i2.pp1197-1205
https://doi.org/10.3844/jcssp.2020.1291.1305
https://doi.org/10.32604/iasc.2022.020588
https://doi.org/10.3390/ijerph17103520
http://ijmcs.future-in-tech.net
http://ijmcs.future-in-tech.net
https://doi.org/10.3390/jcm9030674
https://doi.org/10.1016/j.jiph.2020.06.001
https://doi.org/10.1093/aje/kwac117
https://doi.org/10.1186/s12879-022-07061-7
https://doi.org/10.1186/s12879-022-07061-7
https://doi.org/10.1016/j.cag.2022.05.013


Models. J Interdiscip Mathematics (2021) 24(1):227–43. doi:10.1080/ 
09720502.2020.1840075

193. Atencia M, García-Garaluz E, de Arazoza H, Joya G. Estimation of Parameters 
Based on Artificial Neural Networks and Threshold of HIV/AIDS Epidemic 
System in Cuba. Math Comput Model (2013) 57(11–12):2971–83. doi:10. 
1016/j.mcm.2013.03.007

194. Arlis S, Defit S. Machine Learning Algorithms for Predicting the Spread of 
Covid‒19 in Indonesia. TEM J (2021) 10(2):970–4. doi:10.18421/tem102-61

195. Berhich A, Jebli I, Mbilong PM, El Kassiri A, Belouadha FZ. Multiple Output 
and Multi-Steps Prediction of COVID-19 Spread Using Weather and 
Vaccination Data. Ingenierie des Systemes d’Information (2021) 26(5): 
425–36. doi:10.18280/isi.260501

196. Babu MA, Ahmmed MM, Ferdousi A, Mostafizur Rahman M, Saiduzzaman 
M, Bhatnagar V, et al. The Mathematical and Machine Learning Models to 
Forecast the COVID-19 Outbreaks in Bangladesh. J Interdiscip Mathematics 
(2022) 25(3):753–72. doi:10.1080/09720502.2021.2015095

197. Fakhry NN, Kassam G, Asfoura E. Tracking Coronavirus Pandemic Diseases 
Using Social Media: A Machine Learning Approach. Vol. 11, IJACSA Int J Adv 
Computer Sci Appl (2020). doi:10.14569/IJACSA.2020.0111028

198. Guo Y, Feng Y, Qu F, Zhang L, Yan B, Lv J. Prediction of Hepatitis E Using 
Machine Learning Models. PLoS One (2020) 15(9 September):e0237750. 
doi:10.1371/journal.pone.0237750

199. Frauenfeld L, Nann D, Sulyok Z, Feng YS, Sulyok M. Forecasting Tuberculosis 
Using Diabetes-Related Google Trends Data. Pathog Glob Health (2020) 
114(5):236–41. doi:10.1080/20477724.2020.1767854

200. Gupta M, Jain R, Arora S, Gupta A, Awan MJ, Chaudhary G, et al. AI-Enabled 
COVID-19 Outbreak Analysis and Prediction: Indian States Vs. Union 
Territories. Comput Mater Continua (2021) 67(1):933–50. doi:10.32604/ 
cmc.2021.014221

201. Gupta M, Jain R, Gupta A, Jain K. Real-Time Analysis of COVID-19 
Pandemic on Most Populated Countries Worldwide. CMES - Computer 
Model Eng Sci (2020) 125(3):943–65. doi:10.32604/cmes.2020.012467

202. Alkhammash EH, Algethami H, Alshahrani R. Novel Prediction Model for 
COVID-19 in Saudi Arabia Based on an LSTM Algorithm. Comput Intell 
Neurosci (2021) 2021:6089677. doi:10.1155/2021/6089677

203. Al-Qaness MAA, Saba AI, Elsheikh AH, Elaziz MA, Ibrahim RA, Lu S, et al. 
Efficient Artificial Intelligence Forecasting Models for COVID-19 Outbreak 
in Russia and Brazil. Process Saf Environ Prot (2021) 149:399–409. doi:10. 
1016/j.psep.2020.11.007

204. Amar LA, Taha AA, Mohamed MY. Prediction of the Final Size for COVID- 
19 Epidemic Using Machine Learning: A Case Study of Egypt. Infect Dis 
Model (2020) 5:622–34. doi:10.1016/j.idm.2020.08.008

205. Angeli M, Neofotistos G, Mattheakis M, Kaxiras E. Modeling the Effect of the 
Vaccination Campaign on the COVID-19 Pandemic. Chaos Solitons Fractals 
(2022) 154. doi:10.1016/j.chaos.2021.111621

206. Arık S, Shor J, Sinha R, Yoon J, Ledsam JR, Le LT, et al. A Prospective Evaluation 
of AI-Augmented Epidemiology to Forecast COVID-19 in the USA and Japan. 
NPJ Digit Med (2021) 4(1):146. doi:10.1038/s41746-021-00511-7

207. ArunKumar KE, Kalaga DV, Sai Kumar CM, Chilkoor G, Kawaji M, Brenza 
TM. Forecasting the Dynamics of Cumulative COVID-19 Cases (Confirmed, 
Recovered and Deaths) for Top-16 Countries Using Statistical Machine 
Learning Models: Auto-Regressive Integrated Moving Average (ARIMA) 
and Seasonal Auto-Regressive Integrated Moving Average (SARIMA). 
Appl Soft Comput (2021) 103. doi:10.1016/j.asoc.2021.107161

208. Avirappattu G, Pach A, Locklear CE, Briggs AQ. An Optimized Machine 
Learning Model for Identifying Socio-Economic, Demographic and Health- 
Related Variables Associated with Low Vaccination Levels that Vary Across ZIP 
Codes in California. Prev Med Rep (2022) 28. doi:10.1016/j.pmedr.2022.101858

209. Behnood A, Mohammadi Golafshani E, Hosseini SM. Determinants of the 
Infection Rate of the COVID-19 in the U.S. Using ANFIS and Virus 
Optimization Algorithm (VOA). Chaos Solitons Fractals (2020) 139. 
doi:10.1016/j.chaos.2020.110051

210. Bloise F, Tancioni M. Predicting the Spread of COVID-19 in Italy Using 
Machine Learning: Do Socio-Economic Factors Matter? Struct Change Econ 
Dyn (2021) 56:310–29. doi:10.1016/j.strueco.2021.01.001

211. Devaraj J, Madurai Elavarasan R, Pugazhendhi R, Shafiullah GM, Ganesan S, 
Jeysree AK, et al. Forecasting of COVID-19 Cases Using Deep Learning 
Models: Is It Reliable and Practically Significant? Results Phys (2021) 21: 
103817. doi:10.1016/j.rinp.2021.103817

212. Gupta KD, Dwivedi R, Sharma DK. Predicting and Monitoring COVID-19 
Epidemic Trends in India Using Sequence-to-Sequence Model and an 
Adaptive SEIR Model. Open Computer Sci (2022) 12(1):27–36. doi:10. 
1515/comp-2020-0221

213. Grekousis G, Feng Z, Marakakis I, Lu Y, Wang R. Ranking the Importance of 
Demographic, Socioeconomic, and Underlying Health Factors on US 
COVID-19 Deaths: A Geographical Random Forest Approach. Health 
Place (2022) 74:102744. doi:10.1016/j.healthplace.2022.102744

214. Gupta R, Pandey G, Pal SK. Comparative Analysis of Epidemiological Models 
for COVID-19 Pandemic Predictions. Biostat Epidemiol (2021) 5(1):69–91. 
doi:10.1080/24709360.2021.1913709

215. Kafieh R, Arian R, Saeedizadeh N, Amini Z, Serej ND, Minaee S, et al. 
COVID-19 in Iran: Forecasting Pandemic Using Deep Learning. 
Comput Math Methods Med (2021) 2021:6927985. doi:10.1155/2021/ 
6927985

216. Kafieh R, Saeedizadeh N, Arian R, Amini Z, Serej ND, Vaezi A, et al. Isfahan 
and COVID-19: Deep Spatiotemporal Representation. Chaos Solitons Fractals 
(2020) 141. doi:10.1016/j.chaos.2020.110339

217. Kaliappan J, Srinivasan K, Mian QS, Sundararajan K, Chang CY, Suganthan 
C. Performance Evaluation of Regression Models for the Prediction of the 
COVID-19 Reproduction Rate. Front Public Health (2021) 9. doi:10.3389/ 
fpubh.2021.729795

218. Kalezhi J, Chibuluma M, Chembe C, Chama V, Lungo F, Kunda D. Modelling 
COVID-19 Infections in Zambia Using Data Mining Techniques. Results Eng 
(2022) 13. doi:10.1016/j.rineng.2022.100363

219. Kapwata T, Gebreslasie MT. Random Forest Variable Selection in Spatial 
Malaria Transmission Modelling in Mpumalanga Province,South Africa. 
Geospat Health (2016) 11(3):251–62. doi:10.4081/gh.2016.434

220. Kiang R, Adimi F, Soika V, Nigro J, Singhasivanon P, Sirichaisinthop J, et al. 
(2006). Meteorol Environmental Remote Sensing Neural Network Analysis 
Epidemiology Malaria Transmission Thailand. Geospatial Health 1. doi:10. 
4081/gh.2006.282

221. Lee D, Kim M, Choo H, Shin SY. Symptom-Based COVID19 Screening 
Model Combined with Surveillance Information. In: Studies in Health 
Technology and Informatics. IOS Press BV (2022). p. 719–20. doi:10.3233/ 
shti220569

222. Soyiri IN, Reidpath DD. An Overview of Health Forecasting. Environ Health 
Prev Med (2013) 18(1):1–9. doi:10.1007/s12199-012-0294-6

223. Data Quality Considerations. (PDF) Data Quality Considerations for Big Data 
and Machine Learning: Going Beyond Data Cleaning and Transformations. 
Available online at: https://www.researchgate.net/publication/318432363_ 
Data_Quality_Considerations_for_Big_Data_and_Machine_Learning_ 
Going_Beyond_Data_Cleaning_and_Transformations (Accessed May 22, 
2024).

224. Lu SC, Swisher CL, Chung C, Jaffray D, Sidey-Gibbons C. On the Importance 
of Interpretable Machine Learning Predictions to Inform Clinical Decision 
Making in Oncology. Front Oncol (2023) 13:1129380. doi:10.3389/fonc. 
2023.1129380

Copyright © 2026 Birdi, Patel, Rabet, Singh, Durant, Vosoughi, Kapra, Shergill, 
Mesfin, Ziegler, Ali, Buckeridge, Ghassemi, Gibson, John-Baptiste, Macklin, 
Mccradden, Mckenzie, Mishra, Naraei, Owusu-Bempah, Rosella, Shaw, Upshur 
and Pinto. This is an open-access article distributed under the terms of the 
Creative Commons Attribution License (CC BY). The use, distribution or 
reproduction in other forums is permitted, provided the original author(s) and 
the copyright owner(s) are credited and that the original publication in this journal is 
cited, in accordance with accepted academic practice. No use, distribution or 
reproduction is permitted which does not comply with these terms. 

PHR is edited by the Swiss School of Public Health (SSPH+) in a partnership with 
the Association of Schools of Public Health of the European Region (ASPHER)+

Public Health Reviews | Owned by SSPH+ | Published by Frontiers February 2026 | Volume 47 | Article 1608074 12

Birdi et al. ML for Communicable Disease Control

https://doi.org/10.1080/09720502.2020.1840075
https://doi.org/10.1080/09720502.2020.1840075
https://doi.org/10.1016/j.mcm.2013.03.007
https://doi.org/10.1016/j.mcm.2013.03.007
https://doi.org/10.18421/tem102-61
https://doi.org/10.18280/isi.260501
https://doi.org/10.1080/09720502.2021.2015095
https://doi.org/10.14569/IJACSA.2020.0111028
https://doi.org/10.1371/journal.pone.0237750
https://doi.org/10.1080/20477724.2020.1767854
https://doi.org/10.32604/cmc.2021.014221
https://doi.org/10.32604/cmc.2021.014221
https://doi.org/10.32604/cmes.2020.012467
https://doi.org/10.1155/2021/6089677
https://doi.org/10.1016/j.psep.2020.11.007
https://doi.org/10.1016/j.psep.2020.11.007
https://doi.org/10.1016/j.idm.2020.08.008
https://doi.org/10.1016/j.chaos.2021.111621
https://doi.org/10.1038/s41746-021-00511-7
https://doi.org/10.1016/j.asoc.2021.107161
https://doi.org/10.1016/j.pmedr.2022.101858
https://doi.org/10.1016/j.chaos.2020.110051
https://doi.org/10.1016/j.strueco.2021.01.001
https://doi.org/10.1016/j.rinp.2021.103817
https://doi.org/10.1515/comp-2020-0221
https://doi.org/10.1515/comp-2020-0221
https://doi.org/10.1016/j.healthplace.2022.102744
https://doi.org/10.1080/24709360.2021.1913709
https://doi.org/10.1155/2021/6927985
https://doi.org/10.1155/2021/6927985
https://doi.org/10.1016/j.chaos.2020.110339
https://doi.org/10.3389/fpubh.2021.729795
https://doi.org/10.3389/fpubh.2021.729795
https://doi.org/10.1016/j.rineng.2022.100363
https://doi.org/10.4081/gh.2016.434
https://doi.org/10.4081/gh.2006.282
https://doi.org/10.4081/gh.2006.282
https://doi.org/10.3233/shti220569
https://doi.org/10.3233/shti220569
https://doi.org/10.1007/s12199-012-0294-6
https://www.researchgate.net/publication/318432363_Data_Quality_Considerations_for_Big_Data_and_Machine_Learning_Going_Beyond_Data_Cleaning_and_Transformations
https://www.researchgate.net/publication/318432363_Data_Quality_Considerations_for_Big_Data_and_Machine_Learning_Going_Beyond_Data_Cleaning_and_Transformations
https://www.researchgate.net/publication/318432363_Data_Quality_Considerations_for_Big_Data_and_Machine_Learning_Going_Beyond_Data_Cleaning_and_Transformations
https://doi.org/10.3389/fonc.2023.1129380
https://doi.org/10.3389/fonc.2023.1129380
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

	Machine Learning Used in Communicable Disease Control: A Scoping Review
	Introduction
	Methods
	Search Strategy
	Eligibility Criteria
	Study Selection and Data Collection Process
	Data Synthesis

	Results
	Study Selection and Characteristics
	Application Aims
	Data Sources
	Communicable Diseases
	Technical Approaches
	Consideration of Bias and Its Mitigation

	Discussion
	Conclusion
	Author Contributions
	Funding
	Author Disclaimer
	Conflict of Interest
	Generative AI Statement
	Supplementary Material
	References


